• Press Release

Mount Sinai Researchers Identify Brain Protein That Promotes Maintenance of Chronic Pain

Study results illuminate the potential of novel approach for the treatment of chronic pain.

  • New York, NY
  • (October 16, 2019)

A protein called RGS4 (Regulator of G protein signaling 4) plays a prominent role in the maintenance of long-term pain states and may serve as a promising new target for the treatment of chronic pain conditions, according to research conducted at the Icahn School of Medicine at Mount Sinai and published in print October 16, in The Journal of Neuroscience.

The discovery may help doctors stop acute pain from progressing into chronic pain, a condition in which patients experience not just pain, but a number of debilitating symptoms ranging from sensory deficits to depression and loss of motivation. The transition from acute to chronic (pathological) pain is accompanied by numerous adaptations in immune, glial, and neuronal cells, many of which are still not well understood. As a result, currently available medications for neuropathic or chronic inflammatory pain show limited efficacy and major side effects. Commonly administered opioids provide temporary alleviation of some pain symptoms, but carry serious risks like addiction in the context of long-term treatment for chronic pain. Therefore, there is an imminent need for novel approaches towards the treatment of chronic pain and for the development of medications that disrupt pain states instead of simply alleviating symptoms.

“Our research reveals that RGS4 actions contribute to the transition from acute and sub-acute pain to pathological pain states and to the maintenance of pain,” says Venetia Zachariou, PhD, Professor in the Nash Family Department of Neuroscience, the Department of Pharmacological Sciences and The Friedman Brain Institute at the Icahn School of Medicine at Mount Sinai. “Because chronic pain states affect numerous neurochemical processes and single-target drugs are unlikely to work, it’s exciting to have discovered a multifunctional protein that can be targeted to disrupt the maintenance of pain.”

RGS4 is a multifunctional protein widely expressed in brain circuits that processes pathological pain, mood, and motivation. Through this study, Mount Sinai researchers observed that RGS4 plays an important role in maintaining pain states, regardless of whether the cause of pain was nerve injury or inflammation. Using genetic mouse models to ablate the gene expressing RGS4, the team demonstrated that prevention of RGS4 action disrupts the maintenance of chronic pain states in male and female mice.

Specifically, the research team used genetically modified mice to understand the role of RGS4 in the induction, intensity, and maintenance of chronic pain symptoms. They found that while genetic inactivation of RGS4 does not affect acute pain or the induction of chronic pain, it promotes recovery from sensory hypersensitivity symptoms in preclinical models of peripheral nerve injury, chemotherapy-induced neuropathy, and peripheral inflammation. Mice lacking RGS4 developed all expected symptoms of nerve injury, but they recovered within 3 weeks. Prevention of RGS4 action was also associated with an increase in motivation-related behaviors.

The group also used genetic tools to reduce the expression of RGS4 in the ventral-posterior lateral nucleus of the thalamus, a pain processing center that receives input from the spinal cord and relays this information to several cortical areas. Ultimately, inhibition of RGS4 actions in brain region resulted in recovery from mechanical and cold allodynia. Additionally, the research team used next-generation sequencing to gain insight on the genes and intracellular pathways affected by RGS4. The lab is further investigating the actions of RGS4 in the spinal cord and in mood-regulating areas of the brain to better understand the mechanism by which this protein affects sensory and affective pain symptoms.

Dr. Zachariou’s laboratory is conducting further investigation into the actions of RGS4 in the spinal cord and mood-regulating areas of the brain to better understand the mechanism by which this protein affects sensory and affective pain symptoms. They are also testing the therapeutic potential of RGS4 inhibitors.


About the Mount Sinai Health System

Mount Sinai Health System is one of the largest academic medical systems in the New York metro area, with more than 43,000 employees working across eight hospitals, over 400 outpatient practices, nearly 300 labs, a school of nursing, and a leading school of medicine and graduate education. Mount Sinai advances health for all people, everywhere, by taking on the most complex health care challenges of our time — discovering and applying new scientific learning and knowledge; developing safer, more effective treatments; educating the next generation of medical leaders and innovators; and supporting local communities by delivering high-quality care to all who need it.

Through the integration of its hospitals, labs, and schools, Mount Sinai offers comprehensive health care solutions from birth through geriatrics, leveraging innovative approaches such as artificial intelligence and informatics while keeping patients’ medical and emotional needs at the center of all treatment. The Health System includes approximately 7,300 primary and specialty care physicians; 13 joint-venture outpatient surgery centers throughout the five boroughs of New York City, Westchester, Long Island, and Florida; and more than 30 affiliated community health centers. We are consistently ranked by U.S. News & World Report's Best Hospitals, receiving high "Honor Roll" status, and are highly ranked: No. 1 in Geriatrics and top 20 in Cardiology/Heart Surgery, Diabetes/Endocrinology, Gastroenterology/GI Surgery, Neurology/Neurosurgery, Orthopedics, Pulmonology/Lung Surgery, Rehabilitation, and Urology. New York Eye and Ear Infirmary of Mount Sinai is ranked No. 12 in Ophthalmology. U.S. News & World Report’s “Best Children’s Hospitals” ranks Mount Sinai Kravis Children's Hospital among the country’s best in several pediatric specialties.

For more information, visit https://www.mountsinai.org or find Mount Sinai on FacebookTwitter and YouTube.