• Press Release

Scientists Identify Critical Cancer Immunity Genes Using New Genetic Barcoding Technology

Novel gene editing technique reveals cancer weakness in the immune system and opens possibilities to identify disease-causing genes and new drug targets

  • New York, NY
  • (October 19, 2018)

Scientists at Mount Sinai have developed a novel technology for simultaneously analyzing the functions of hundreds of genes with resolution reaching the single cell level. The technology relies on a barcoding approach using a novel protein described in a paper published in October 2018 in the journal Cell.

Since the sequencing of the first human genome in the early 2000s revealed a set of more than 20,000 protein-coding genes, scientists have not yet been able to characterize the many functions of individual gene. Without that information, our understanding of how the human genome works — and how to use that knowledge to predict, prevent, treat and even cure disease — is limited. In 2012 and 2013, scientists established a powerful new approach for editing genes, called CRISPR, which can be used to determine gene functions. CRISPR has taken the scientific world by storm, but researchers have still been challenged with using CRISPR to study the many thousands of genes and their numerous possible roles.  

A new technology developed by scientists at the Icahn School of Medicine at Mount Sinai helps address the genomics challenge of analyzing the genome at an unprecedented scale. The research, led by postdoctoral fellows Aleksandra Wroblewska, PhD and Maxime Dhainaut, PhD, is novel tool to barcode and track different CRISPRs using synthetic proteins called epitopes. The protein barcodes referred to as Pro-codes, enables hundreds of CRISPRs to be used together to knockout a multitude of genes.

While there are existing technologies for pooling CRISPRs, these approaches rely heavily on DNA as a barcode and permit only a low resolution look into gene function. Through the Pro-Code technique, Mount Sinai researchers were able to demonstrate a way for scientists to more comprehensively characterize the biological effects of a gene.,

In the study, the researchers used the Pro-Code technology to search for genes required for the immune system to protect from cancer. They generated CRISPRs to target the deletion of suspected immune regulatory genes, and paired them with the Pro-Codes. Pro-Code/CRISPR libraries were then introduced to breast cancer cells, and the tumors were challenged with killer T cells that had been engineered to recognize the cancer cells. Most of the cancer cells were rapidly eliminated by the T cells but  there were some cells that completed resisted death. The Pro-Code technology helped determine which genes were lost in the resistant cells some with unrecognized roles in sensitizing cancer cells in the immune system. The studies also identified a negative regulator of the immune checkpoint PD-L1, a major clinical target of cancer immunotherapy.

“There is still a great deal of work to be done to fully understand the human genome. We still don't know what most genes do and how they are connected,” said Brian Brown, PhD, Associate Professor of Genetics and Genomic Sciences and Associate Director of the Immunology Institute at the Icahn Institute at Mount Sinai and senior author of the publication. “The Pro-Code technology could greatly accelerate one of the major goals of the post-genome era: annotation of the human genome. This discovery will be key to discover disease-causing genes that could lead to novel drug targets. It's already given us new insights in cancer immunology.”

This work was supported by funding from the National Institutes of Health’s National Cancer Institute (R33CA182377) and the National Institute of Allergy and Infectious Disease (R01AI113221), as well as the Ovarian Cancer Research Foundation.

Paper cited: Aleksandra Wroblewska, Maxime Dhainaut et al. Protein Barcodes enable high dimensional single cell CRISPR screens. Cell. 175, 1-15. November 1, 2018. https://doi.org/10.1016/j.cell.2018.09.022.


About the Mount Sinai Health System

Mount Sinai Health System is one of the largest academic medical systems in the New York metro area, with more than 43,000 employees working across eight hospitals, over 400 outpatient practices, nearly 300 labs, a school of nursing, and a leading school of medicine and graduate education. Mount Sinai advances health for all people, everywhere, by taking on the most complex health care challenges of our time — discovering and applying new scientific learning and knowledge; developing safer, more effective treatments; educating the next generation of medical leaders and innovators; and supporting local communities by delivering high-quality care to all who need it.

Through the integration of its hospitals, labs, and schools, Mount Sinai offers comprehensive health care solutions from birth through geriatrics, leveraging innovative approaches such as artificial intelligence and informatics while keeping patients’ medical and emotional needs at the center of all treatment. The Health System includes approximately 7,300 primary and specialty care physicians; 13 joint-venture outpatient surgery centers throughout the five boroughs of New York City, Westchester, Long Island, and Florida; and more than 30 affiliated community health centers. We are consistently ranked by U.S. News & World Report's Best Hospitals, receiving high "Honor Roll" status, and are highly ranked: No. 1 in Geriatrics and top 20 in Cardiology/Heart Surgery, Diabetes/Endocrinology, Gastroenterology/GI Surgery, Neurology/Neurosurgery, Orthopedics, Pulmonology/Lung Surgery, Rehabilitation, and Urology. New York Eye and Ear Infirmary of Mount Sinai is ranked No. 12 in Ophthalmology. U.S. News & World Report’s “Best Children’s Hospitals” ranks Mount Sinai Kravis Children's Hospital among the country’s best in several pediatric specialties.

For more information, visit https://www.mountsinai.org or find Mount Sinai on FacebookTwitter and YouTube.