• Press Release

Mount Sinai Researchers Identify New Intracellular Pathway to Promote Pain Relief Without Increasing the Risk of Addiction

Study results may provide mechanism to make opioids safer and more efficient

  • New York, NY
  • (February 08, 2018)

A newly identified protein can be manipulated to make opioid painkillers effective at lower doses while also muting the reward mechanism that leads to addiction, Mount Sinai researchers have found.

The protein, RGSz1 (Regulator of G protein signaling z1), which is expressed in brain regions that mediate analgesic responses, is part of an intracellular network that controls the pain-relieving effects of opioid analgesics like morphine, fentanyl, and methadone without increasing the risk of reward or dependence, according to the study conducted in mouse models at the Icahn School of Medicine at Mount Sinai and published February 12 in Proceedings of the National Academy of Sciences. The mechanisms uncovered in this study may provide novel avenues for pharmacological interventions that can be used to optimize the actions of opioid medications, leading to safer and less addictive treatments.

Opioids are powerful analgesics, but when they are used long-term, they promote dependence and can easily transition to addiction. Patients who receive opioids for chronic pain require higher amounts of the drug over time as they develop analgesic tolerance. The need for higher amounts not only results in severe and often life-threatening adverse effects, but it also increases the risk for dependence and addiction. Amidst the current opioid crisis in the United States, there is an immediate need to develop novel therapeutic interventions for safer and more efficient analgesics.

The development of safer opioids is challenging because opioid receptors are expressed throughout the brain and not just in the cells mediating pain relief. The Mount Sinai research team targeted an intracellular network that controls the actions of opioids primarily in the periaqueductal gray, a brain region that plays a critical role in analgesic responses. Using genetic mouse models for global or brain region-targeted manipulation of RGSz1 expression, Mount Sinai researchers identified RGSz1 as a negative modulator of opioid analgesia, and a tolerance-promoting factor. Mice that lacked the gene responsible for encoding RGSz1 (RGSz1 knockout mice) responded to significantly lower doses of opioids to achieve pain relief. Furthermore, when RGSz1 activity was blocked, opioids were less rewarding, providing further evidence that RGSz1-controlled pathways may be targeted to optimize the therapeutic actions of opioids.

“Our discovery that RGSz1 and RGSz1 regulated pathways can be targeted to promote analgesia is very exciting because it enables us to develop strategies for the use of low opioid doses for pain relief,” says Venetia Zachariou, PhD, Associate Professor in the Fishberg Department of Neuroscience, the Department of Pharmacological Sciences, The Friedman Brain Institute, and The Addiction Institute, Icahn School of Medicine at Mount Sinai.

Additionally, the research team discovered that RGSz1 competes with another RGS protein, Axin 2, and this competition controls the function of the protein β-catenin. β-catenin plays an important role in opioid actions by promoting the expression of genes that counteract the maladaptive changes associated with analgesic tolerance. This is another factor uncovered in this study that provides insight about the cellular and molecular pathways that mediate the actions of opioids in specific brain regions or cell types, which is essential for the development of safer therapeutics for analgesia or addiction.

“RGSz1 is expressed only in subsets of neurons that mediate opioid actions. The actions of opioids in addiction-related networks are mediated by distinct RGS proteins. We are now screening currently prescribed opioids as well as new compounds to determine their abuse potential and analgesic efficacy based on the RGS protein they activate. That knowledge will be power in the fight against this deadly opioid epidemic,” says Dr. Zachariou.

Researchers from UT Southwestern Medical Center contributed to this research.

The study was supported by NINDS NS086444 and NS098264.


About the Mount Sinai Health System

The Mount Sinai Health System is New York City's largest academic medical system, encompassing eight hospitals, a leading medical school, and a vast network of ambulatory practices throughout the greater New York region. Mount Sinai advances medicine and health through unrivaled education and translational research and discovery to deliver care that is the safest, highest-quality, most accessible and equitable, and the best value of any health system in the nation. The Health System includes approximately 7,300 primary and specialty care physicians; 13 joint-venture ambulatory surgery centers; more than 415 ambulatory practices throughout the five boroughs of New York City, Westchester, Long Island, and Florida; and more than 30 affiliated community health centers. The Mount Sinai Hospital is ranked on U.S. News & World Report's "Honor Roll" of the top 20 U.S. hospitals and is top in the nation by specialty: No. 1 in Geriatrics and top 20 in Cardiology/Heart Surgery, Diabetes/Endocrinology, Gastroenterology/GI Surgery, Neurology/Neurosurgery, Orthopedics, Pulmonology/Lung Surgery, Rehabilitation, and Urology. New York Eye and Ear Infirmary of Mount Sinai is ranked No. 12 in Ophthalmology. Mount Sinai Kravis Children's Hospital is ranked in U.S. News & World Report’s “Best Children’s Hospitals” among the country’s best in four out of 10 pediatric specialties. The Icahn School of Medicine is one of three medical schools that have earned distinction by multiple indicators: ranked in the top 20 by U.S. News & World Report's "Best Medical Schools," aligned with a U.S. News & World Report "Honor Roll" Hospital, and No. 14 in the nation for National Institutes of Health funding. Newsweek’s “The World’s Best Smart Hospitals” ranks The Mount Sinai Hospital as No. 1 in New York and in the top five globally, and Mount Sinai Morningside in the top 20 globally.

For more information, visit https://www.mountsinai.org or find Mount Sinai on FacebookTwitter and YouTube.