• Press Release

Researchers Identify Immunotherapy Targets in Early-Stage Lung Cancer

  • New York, NY
  • (May 04, 2017)

Novel Barcoding Method Maps Immune System Components, Offering an Atlas for Potential Cure Before Cancer Progresses

Immunotherapy, which has achieved remarkable results in late-stage lung cancer patients, can also hold great hope for newly diagnosed patients, cutting the deadly disease off before it has the chance to take hold and offering a potential cure, according to a new Mount Sinai study published today in Cell.

Researchers at The Tisch Cancer Institute at Mount Sinai discovered that some of the same immune cells that allow immunotherapy to turn around some late-stage lung cancers are also present just as the disease takes hold. Before now, little was known about the immune response in early lung cancer, said Miriam Merad, MD, PhD, Professor of Oncological Sciences and of Medicine (Hematology and Medical Oncology) at The Tisch Cancer Institute at Mount Sinai.

Dr. Merad and a multidisciplinary team of thoracic surgeons, pathologists, and scientists devised a comprehensive study that began when patients went into surgery to have cancerous lesions removed. The patients’ lung tumor samples, samples of surrounding healthy lung tissue, and blood samples were immediately analyzed on a cellular level to map out the immune system components present.

The team of researchers crafted a barcoding method that attaches cells in each sample to a different metal isotope, allowing the samples to be pooled for a simultaneous analysis of cells from all three tissue types. The scientists combined this barcoding approach with high-dimensional profiling to map the complete immune landscape to search for tumor-driven changes that would be vulnerable to targeted immunotherapy.

The analysis of the samples showed that stage I lung cancer lesions already harbor immune system components that likely compromise anti-tumor T cells’ ability to fend off cancer. These single-cell analyses offered unprecedented detail of tumor-driven immune changes, providing a powerful tool for the future design of immunotherapies such as checkpoint inhibitors, particularly those that target the PD-1 and PD-L1 proteins that shield cancer from the immune system; these checkpoint inhibitors have shown great promise in later-stage cancers.

“Immunotherapy has mostly been used in advanced or metastatic lung cancer, but its benefit in early-stage tumors remains unknown,” Dr. Merad said. “The standard treatment for early lung cancer is normally surgical removal of the lesions—sometimes with chemotherapy and radiation. Our study reveals that early lung lesions are heavily infiltrated with many different immune cells, suggesting that immunotherapy could also work on very early lesions and potentially lead to a cure by heading cancer off at the pass before it really takes root in the lungs.”

This new research also identified a multitude of additional immunotherapy targets to increase the number of patients that would significantly benefit from immunotherapy, which at the moment remains fairly small.  This research is being used to develop immunotherapy trials with early lung cancer patients.

“About 50 percent of patients with small lung cancer lesions relapse,” Merad said. “And when lung cancer is advanced, chemotherapy does not have a great success rate, so knowing how to attack the cancer at an early stage could have huge impacts on the number of patients relapsing and their overall survival. Our research further corroborates the belief that immunotherapy agents are most efficient at early stages of cancer, particularly in patients who have never been treated with chemotherapy.”

Raja M. Flores, MD, Chair of the Department of Thoracic Surgery at Mount Sinai Health System, and his team contributed significantly to the study by identifying patients and providing their tissue samples.  Mount Sinai’s Human Immune Monitoring Center (HIMC) also played an integral role, by providing a platform to analyze patient samples using quality control assays and cutting-edge technology.  Through the HIMC, Dr. Merad plans to build a portal to share the results of this study and of other HIMC research to collaborate with colleagues at other cancer centers in the hopes of promoting further cancer and immunology research.

This study was funded by Foundation pour la Recherche Medicale DEA20150633125 and NIH grants R01, R01 CA173861, U19AI128949, U24 AI 118644, U19 AI 117873-01.


About the Mount Sinai Health System

The Mount Sinai Health System is New York City's largest academic medical system, encompassing eight hospitals, a leading medical school, and a vast network of ambulatory practices throughout the greater New York region. Mount Sinai is a national and international source of unrivaled education, translational research and discovery, and collaborative clinical leadership ensuring that we deliver the highest quality care—from prevention to treatment of the most serious and complex human diseases. The Health System includes more than 7,200 physicians and features a robust and continually expanding network of multispecialty services, including more than 400 ambulatory practice locations throughout the five boroughs of New York City, Westchester, and Long Island. The Mount Sinai Hospital is ranked No. 14 on U.S. News & World Report's "Honor Roll" of the Top 20 Best Hospitals in the country and the Icahn School of Medicine as one of the Top 20 Best Medical Schools in country. Mount Sinai Health System hospitals are consistently ranked regionally by specialty and our physicians in the top 1% of all physicians nationally by U.S. News & World Report.

For more information, visit https://www.mountsinai.org or find Mount Sinai on FacebookTwitter and YouTube.