Researchers find genetic aberrations responsible for congenital diseases that are undetectable by conventional genetic screening
The research team identified novel epigenetic mutations to be a significant contributor to neurodevelopmental disorders and congenital anomalies
Researchers have identified a type of genetic aberration to be the cause of certain neurodevelopmental disorders and congenital diseases, such as autism and congenital heart disease, which are undetectable by conventional genetic testing.
The discovery that genetic mutations called epivariations are involved in these diseases could lead to more advanced diagnostic tools for many congenital and neurodevelopmental disorders, say researchers from the Department of Genetics and Genomics Sciences at the Icahn School of Medicine at Mount Sinai and collaborators from Radboud University Medical Center (The Netherlands), University of Minho (Portugal), and Porto Hospital Center (Portugal). The research team's results were published in May 2018 in Nature Communications.
Epivariations are variations in the DNA molecule that do not affect the basic composition of the DNA molecule, called the DNA sequence, but result in a change in gene function. Because conventional genetic testing analyzes the DNA sequence, diseases that are caused by these epivariations need to be tested for using different mechanisms. The specific epivariation found in this study was caused by excess DNA methylation--when a methyl group, composed of hydrogen and carbon atoms, is attached to a DNA molecule.
"Our study suggests that these epigenetic mutations are a significant contributor to human disease," said Andrew Sharp, PhD, Associate Professor in the Department of Genetic and Genomic Sciences at the Icahn School of Medicine and lead investigator of the study.
The research team studied the genetic profiles of 489 patients with known neurodevelopmental or congenital disorders, who had all previously undergone genetic testing that identified no DNA mutations. These disorders had long been thought to have genetic origins, so the scientists suspected that even though conventional testing hadn't discovered a genetic cause for them, epivariations in their DNA could be present, resulting in gene dysfunction leading to disease. To assess for epivariations, Sharp's team conducted methylation profiling--determining the DNA methylation within each patient's genome--finding epigenetic mutations that could be the cause of disease in approximately 20 percent of the studied cohort. Furthermore, in analyzing more than 5,000 genome profiles of individuals with no known diagnosis of congenital disease or neurodevelopmental disorder, the team discovered epigenetic mutations to be relatively common, and that they could typically be identified via a blood test.
Standard genetic screening methods, such as whole-genome sequencing, are applied to thousands of human genomes around the world. What's missing, says Dr. Sharp, is epigenomic profiling. "These findings can open up a whole new world in what we know about disease and genetic profiling," Dr. Sharp continued. "Investigating DNA methylation when profiling genomes for disease mutations could help us uncover causative defects in congenital and neurodevelopmental diseases that have eluded us for years."
About the Icahn School of Medicine at Mount Sinai
The Icahn School of Medicine at Mount Sinai is an international leader in medical and scientific training, biomedical research, and patient care. It is the medical school for the Mount Sinai Health System, which includes seven hospital campuses, and has more than 5,000 faculty and nearly 2,000 students, residents and fellows. The School is made up of 36 multidisciplinary research, educational, and clinical institutes and 33 academic departments. It ranks 13th among U.S. medical schools for NIH funding and 2nd in research dollars per principal investigator among U.S. medical schools by the Association of American Medical Colleges (AAMC). The School was named 4th among "World's Most Innovative Companies in Data Science" by Fast Company magazine in 2016. For more information, visit http://icahn.mssm.edu
About the Mount Sinai Health System
Mount Sinai Health System is one of the largest academic medical systems in the New York metro area, with 48,000 employees working across seven hospitals, more than 400 outpatient practices, more than 600 research and clinical labs, a school of nursing, and a leading school of medicine and graduate education. Mount Sinai advances health for all people, everywhere, by taking on the most complex health care challenges of our time—discovering and applying new scientific learning and knowledge; developing safer, more effective treatments; educating the next generation of medical leaders and innovators; and supporting local communities by delivering high-quality care to all who need it.
Through the integration of its hospitals, labs, and schools, Mount Sinai offers comprehensive health care solutions from birth through geriatrics, leveraging innovative approaches such as artificial intelligence and informatics while keeping patients’ medical and emotional needs at the center of all treatment. The Health System includes approximately 9,000 primary and specialty care physicians and 11 free-standing joint-venture centers throughout the five boroughs of New York City, Westchester, Long Island, and Florida. Hospitals within the System are consistently ranked by Newsweek’s® “The World’s Best Smart Hospitals, Best in State Hospitals, World Best Hospitals and Best Specialty Hospitals” and by U.S. News & World Report's® “Best Hospitals” and “Best Children’s Hospitals.” The Mount Sinai Hospital is on the U.S. News & World Report® “Best Hospitals” Honor Roll for 2024-2025.
For more information, visit https://www.mountsinai.org or find Mount Sinai on Facebook, Instagram, LinkedIn, X, and YouTube.