Centers for Disease Control and Prevention Center for Preparedness and Response

Clinical Management of Critically III Adults with COVID-19

Clinician Outreach and Communication Activity (COCA) Webinar

Thursday, April 2, 2020

Continuing Education

Continuing Education is not offered for this COCA Call.

To Ask a Question

- Using the Webinar System
 - Click the Q&A button.
 - Type your question in the Q&A box.
 - Submit your question.
- If we are unable to get to your question during the call, you may also email your question to coca@cdc.gov.
- For media questions, please contact CDC Media Relations at 404-639-3286, or send an email to media@cdc.gov.

For More Clinical Care Information on COVID-19

- Call COVID-19 Clinical Call Center at 770-488-7100 (24 hours/day).
- Refer patients to state and local health departments for COVID-19 testing and test results.
 - Clinicians should NOT refer patients to CDC to find out where or how to get tested for COVID-19, OR to get COVID-19 test results.
- Visit CDC's Coronavirus (COVID-19) website: https://www.cdc.gov/coronavirus
- Visit emergency.cdc.gov/coca over the next several days to learn about future COCA Calls.

Today's Presenters

CAPT Tim Uyeki, MD

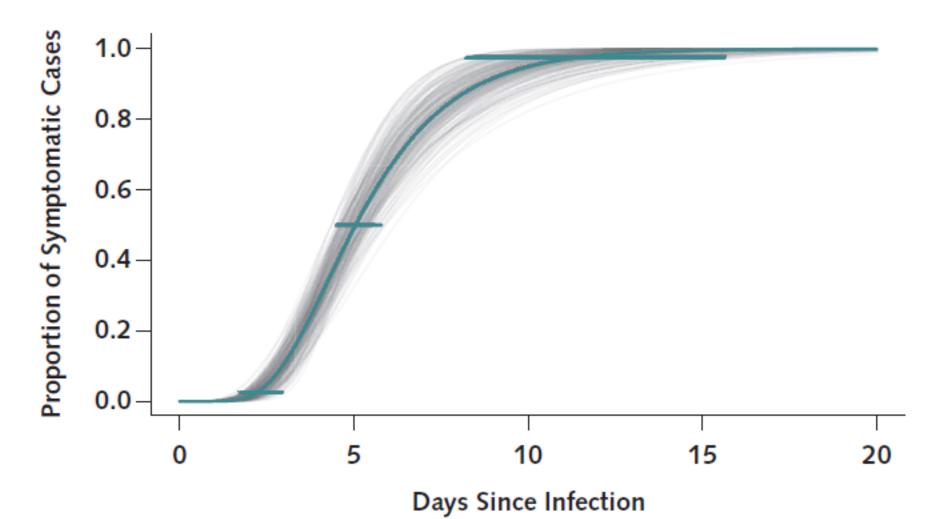
Clinical Team Lead
COVID-19 Response
Centers for Disease Control and Prevention

Michael Bundesmann, MD, FCCP Medical Director of Respiratory Therapy Pulmonary and Critical Care Medicine EvergreenHealth Kirkland, WA

Waleed Alhazzani, MD, MSc, FRCPC
 Associate Professor Department of Medicine,
 McMaster University
 Hamilton, Ontario, Canada

CDC Coronavirus Disease 2019 Response

COVID-19 Overview for Clinicians

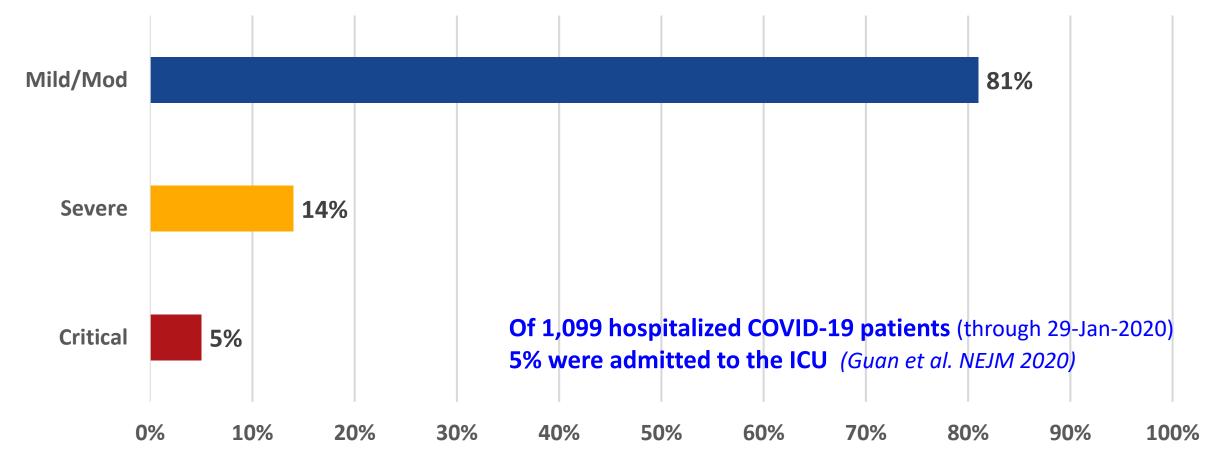

Tim Uyeki MD, MPH Clinical Team CDC COVID-19 Response April 2, 2020

For more information: www.cdc.gov/COVID19

Median incubation period is 4-5 days (range: 2-14 days)

Links: Lauer Ann Intern Med 2020, Xu BMJ 2020, Guan NEJM 2020

COVID-19: Wide spectrum of disease


Mild Illness	ss Uncomplicated upper respiratory tract viral infection	
Moderate Pneumonia Pneumonia Pneumonia Pneumonia		
Severe Pneumonia	Pneumonia with dyspnea, respiratory distress, SpO2≤93% on RA, P/F ratio <300	
Critical Illness	Respiratory failure, septic shock, multiple organ dysfunction/failure	

Link: WHO Guidelines 2020

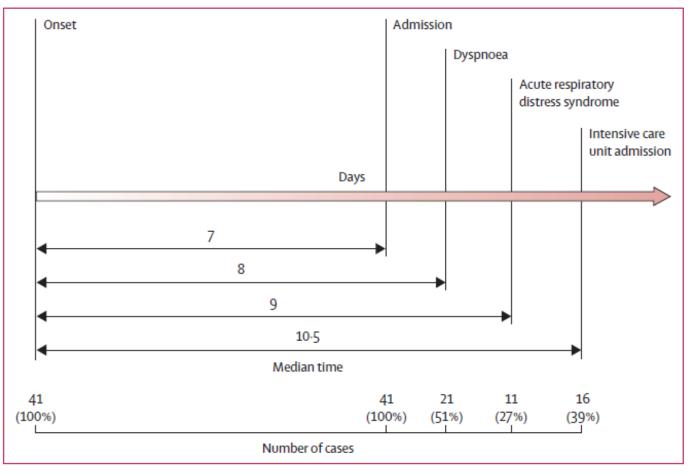
Most patients had mild to moderate disease, but nearly 20% had severe or critical illness

COVID-19 - China through 11-Feb-2020 (N=44,415)

Links: Wu JAMA 2020

Potential for patients to have acute deterioration in the second week of illness

COVID-19 - China through 2-Jan-2020 (N = 41)



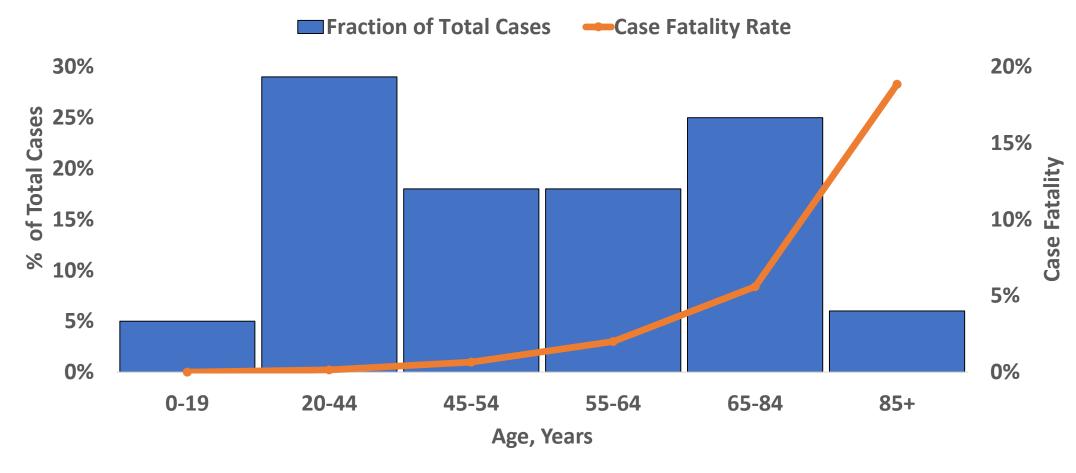
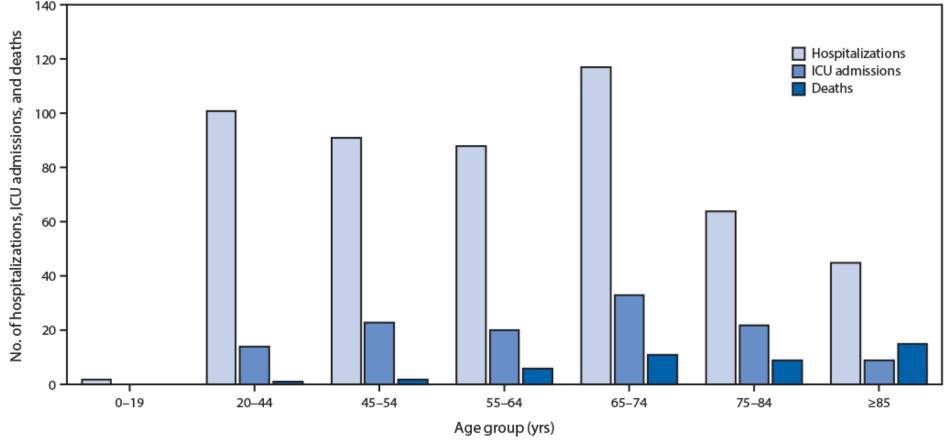


Figure 2: Timeline of 2019-nCoV cases after onset of illness

Link: *Huang Lancet 2020*

But the case-fatality is disproportionately higher among older adults

COVID-19 - United States, February 12–March 16, 2020 (N = 4,226)

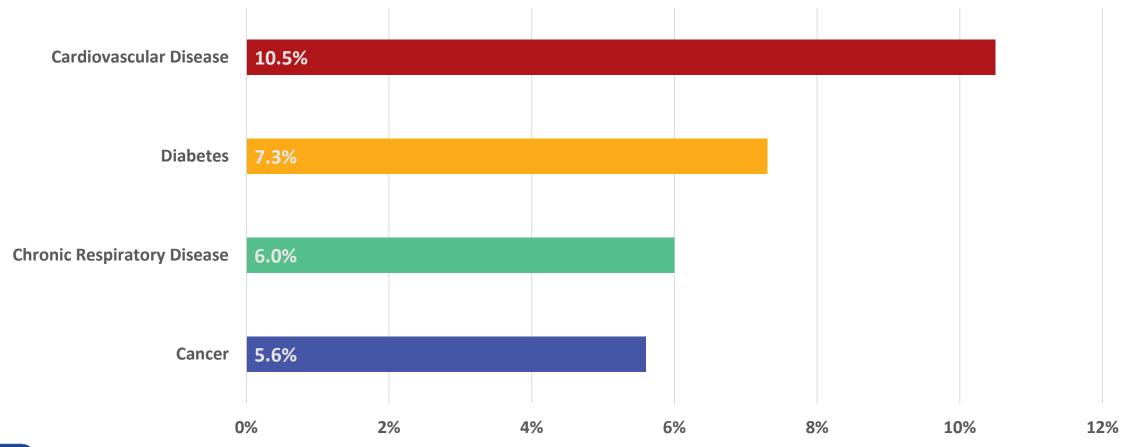


Links: <u>MMWR 2020</u>

Older adults: More likely to require ICU care and die, but hospitalizations and ICU admissions also occur among non-elderly adults

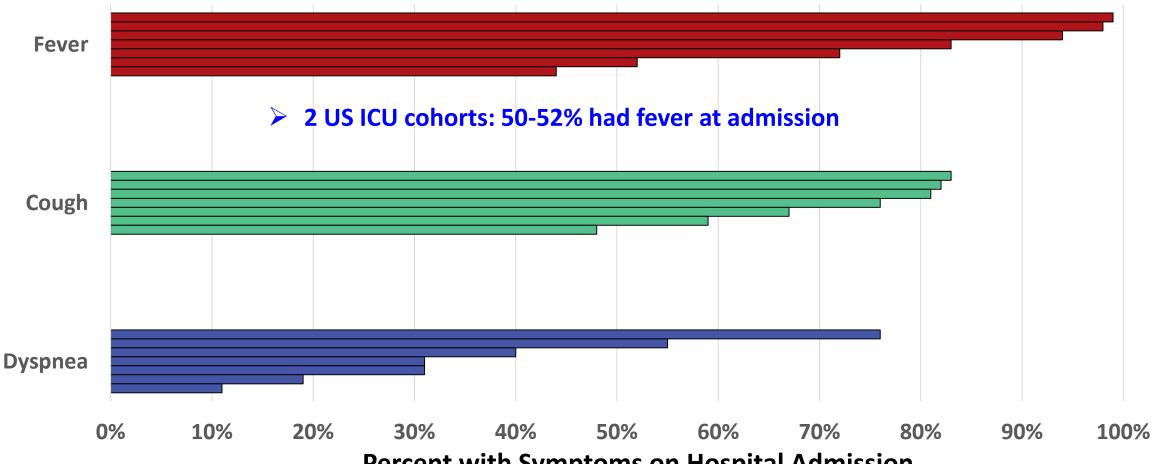
COVID 10 United States, February 12, March 16, 2020 (N = 4, 226)

COVID-19 United States, February 12–March 16, 2020 (N = 4,226)



Links: *MMWR 2020*

Mortality from COVID-19 is highest among persons with underlying medical conditions


COVID-19 - China through 11-Feb-2020

Link: China COVID-19 Epi Team 2020

Most, but not all patients have fever, cough, or shortness of breath on hospital admission (China, Singapore, U.S.)

Lower respiratory specimens may have higher virus yield than upper respiratory specimens, China (N = 205) Jan 1-Feb 17 2020

Table. Detection Results of Clinical Specimens by Real-Time Reverse Transcriptase-Polymerase Chain Reaction

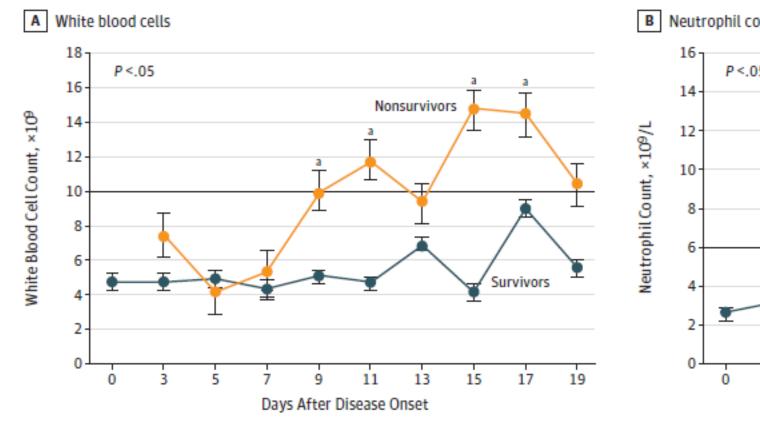
Sp	ecimens and values	Bronchoalveolar lavage fluid (n = 15)	Fibrobronchoscope brush biopsy (n = 13)	Sputum (n = 104)	Nasal swabs (n = 8)	Pharyngeal swabs (n = 398)	Feces (n = 153)	Blood (n = 307)	Urine (n = 72)
Po	sitive test result, No. (%)	14 (93)	6 (46)	75 (72)	5 (63)	126 (32)	44 (29)	3 (1)	0
Cy	cle threshold, mean (SD)	31.1 (3.0)	33.8 (3.9)	31.1 (5.2)	24.3 (8.6)	32.1 (4.2)	31.4 (5.1)	34.6 (0.7)	ND
	Range	26.4-36.2	26.9-36.8	18.4-38.8	16.9-38.4	20.8-38.6	22.3-38.4	34.1-35.4	
	95% CI	28.9-33.2	29.8-37.9	29.3-33.0	13.7-35.0	31.2-33.1	29.4-33.5	0.0-36.4	

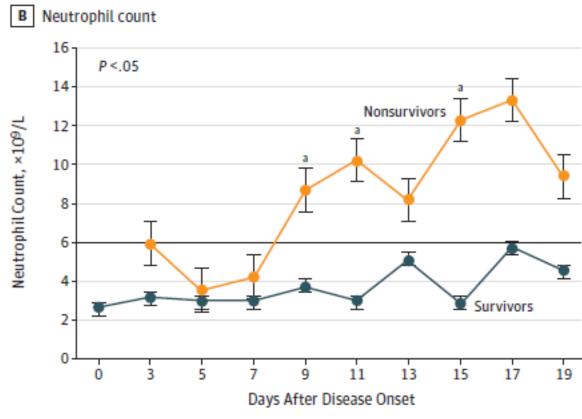
Abbreviation: ND, no data.

Link: Wang JAMA 2020

Laboratory findings at hospital admission

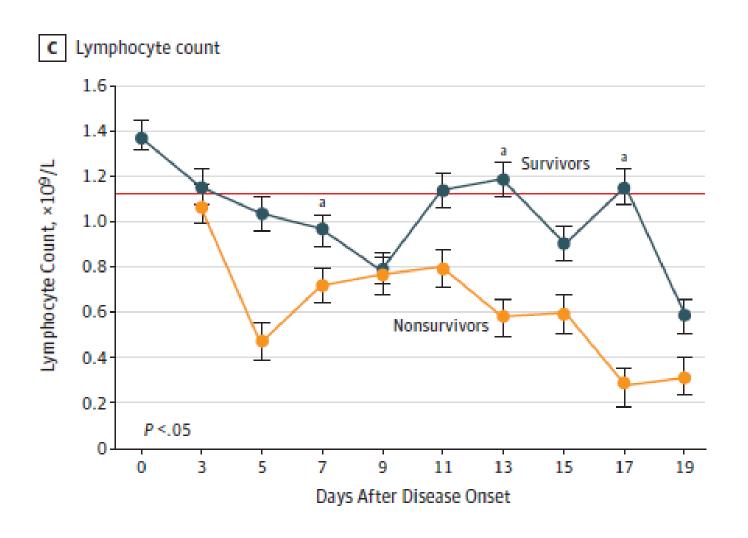
- > Lymphopenia (83%)
- Thrombocytopenia (36%)
- Leukopenia (34%)
- C-reactive protein ≥10 mg/L: (61%)
- Elevated AST, ALT: (20-39%) higher with severe disease
- Procalcitonin typically normal on admission
- > Co-infections:
 - Sporadic viral co-infections reported (e.g., influenza, parainfluenza)
 - Community-acquired secondary bacterial infection not reported in published case series (blood cultures: negative)


Link: CDC Clinical Guidance 2020

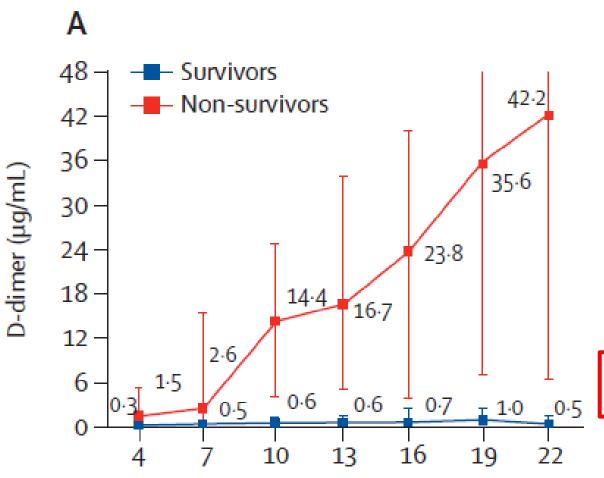

Laboratory abnormalities in severe disease

- Associated with severe or critical illness:
 - ↓lymphocytes, ↑neutrophils
 - ↑alanine aminotransferase and ↑aspartate aminotransferase levels
 - ↑lactate dehydrogenase, ↑PCT, ↑CRP, ↑ferritin levels
 - 1 serum levels of pro-inflammatory cytokines and chemokines
 - \triangleright Evidence of immune dysregulation: Higher plasma levels of proinflammatory cytokines (TNF α , IL-1, IL-6) and chemokines (IL-8) in severe/critically ill patients vs less severely ill patients
- Associated with mortality: ↑D-dimers and lymphopenia

Leukocytosis, specifically neutrophilia, during hospitalization is associated with death (N = 138, China, Jan 1-28, 2020)



Link: Wang JAMA 2020


Lymphopenia is common in all patients, but may be lower in non survivors than survivors (N = 138, China, Jan 1-28, 2020)

Link: Wang JAMA 2020

D-dimer is a strong predictor of death when compared with other markers of COVID-19 severity (N = 191), China, Dec 28, 2019 - Jan 28, 2020

	Univariable OR (95% CI)	p value	Multivariable OR (95% CI)	pvalue		
Demographics and clinical characteristics						
Age, years*	1·14 (1·09–1·18)	<0.0001	1·10 (1·03-1·17)	0-0043		
SOFA score	6·14 (3·48–10·85)	<0.0001	5.65 (2.61–12.23)	<0.0001		
D-dimer, µg/mL						
≤0.5	1 (ref)	**	1 (ref)	**		
> 0.5	1.96 (0.52-7.43)	0.32	2·14 (0·21-21·39)	0.52		
> 1	20·04 (6·52–61·56)	<0.0001	18-42 (2-64-128-55)	0.0033		

Link: Zhou Lancet 2020

Adult ICU Case Series, U.S. (N = 21) Feb 20-March 5, 2020; (N=24) Feb 24-March 9, 2020

- Common co-morbidities
 - Heart failure (0-43%)
 - COPD (4-33%)
 - Diabetes (33-58%)
 - Kidney disease (21-48%)
 - Obstructive sleep apnea (21-29%)
- Onset to ICU admission: @4.5-7 days
- Mean age: 70 years (43-92); 63 years (23-97)
- Complications
 - Respiratory failure requiring mechanical ventilation: (71-75%)
 - Shock requiring vasopressors: (67-71%)
 - Acute kidney failure: (0-19%)
 - Cardiomyopathy: (0-33%)
 - Bacterial co-infection (1/21; 0/20)
- Mortality: (50-52%)

COVID-19: Inpatient clinical management

No proven FDA-approved treatment for COVID-19

- Management is supportive
 - Hypoxemic respiratory failure/ARDS
 - Septic shock
 - Cardiomyopathy/arrhythmia
 - Common critical care complications

Link: CDC Clinical Guidance 2020

COVID-19: Therapeutics

- No FDA-approved specific treatment for COVID-19 patients
 - Corticosteroids should be avoided unless indicated for other reasons
 - May prolong viral replication
 - Data supporting use is uncontrolled and not high quality
 - Several drugs under investigation:
 - Remdesivir
 - Hydroxychloroquine or chloroquine
 - Lopinavir/ritonavir
 - IL-6 blockers (e.g., tocilizumab, sarilumab)

Link: CDC Clinical Guidance 2020

Resources for Inpatient COVID-19 Management

Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19)

Waleed Alhazzani^{1,2}, Morten Hylander Møller^{3,4}, Yaseen M. Arabi⁵, Mark Loeb^{1,2}, Michelle Ng Gong⁶, Eddy Fan⁷, Simon Oczkowski^{1,2}, Mitchell M. Levy^{8,9}, Lennie Derde^{10,11}, Amy Dzierba¹², Bin Du¹³, Michael Aboodi⁶, Hannah Wunsch^{14,15}, Maurizio Cecconi^{16,17}, Younsuck Koh¹⁸, Daniel S. Chertow¹⁹, Kathryn Maitland²⁰, Fayez Alshamsi²¹, Emilie Belley-Cote^{1,22}, Massimiliano Greco^{16,17}, Matthew Laundy²³, Jill S. Morgan²⁴, Jozef Kesecioglu¹⁰, Allison McGeer²⁵, Leonard Mermel⁸, Manoj J. Mammen²⁶, Paul E. Alexander^{2,27}, Amy Arrington²⁸, John Centofanti²⁹, Giuseppe Citerio^{30,31}, Bandar Baw^{1,32}, Ziad A. Memish³³, Naomi Hammond^{34,35}, Frederick G. Hayden³⁶, Laura Evans³⁷, Andrew Rhodes³⁸

Strong	Must do or must avoid	
Best Practice	Must do or must avoid	
Weak	Consider doing or consider avoiding	

Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected

Interim guidance 13 March 2020

This is the second edition (version 1.2) of this document, which was originally adapted from Clinical management of severe acute respiratory infection when MERS-CoV infection is suspected (WHO, 2019).

It is intended for clinicians involved in the care of adult, pregnant, and paediatric patients with or at risk for severe acute respiratory infection (SARI) when infection with the COVID-19 virus is suspected. Considerations for paediatric patients and pregnant women are highlighted throughout the text. It is not meant to replace clinical judgment or specialist consultation but rather to strengthen clinical management of these patients and to provide up-to-date guidance. Best practices for infection prevention and control (IPC), triage and optimized supportive care are included.

Ø	Strong recommendation or best practice
•	Consider in select patients
⊗	Intervention is harmful

Link: WHO Guidelines 2020, Surviving Sepsis Campaign 2020

COVID-19 Case Examples

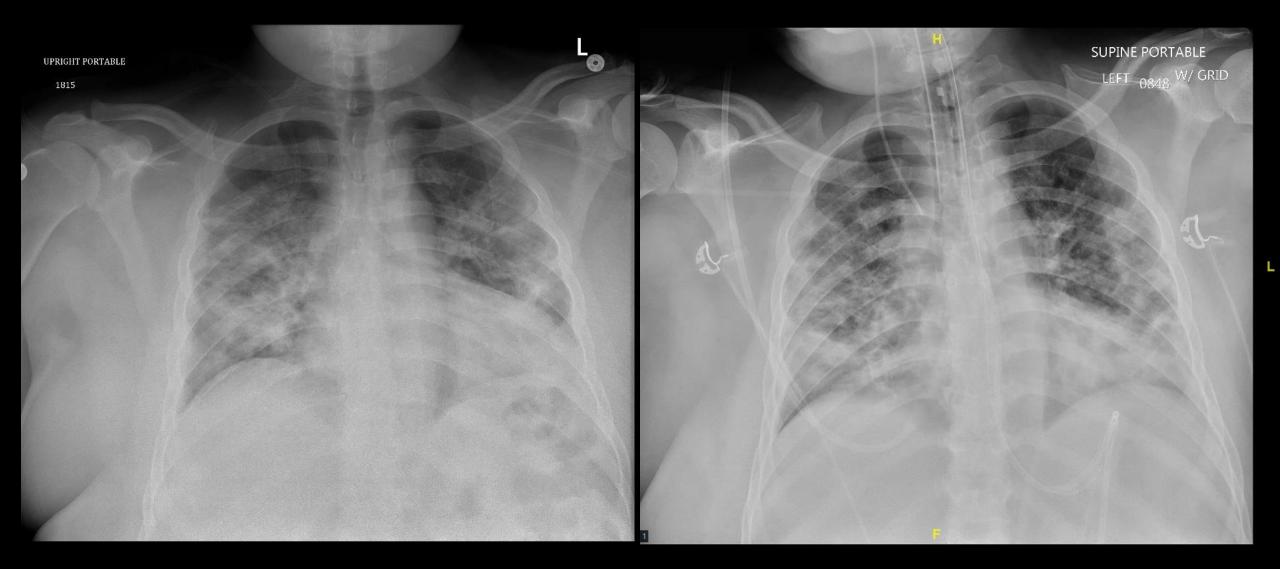
MICHAEL BUNDESMANN, MD, FCCP

MEDICAL DIRECTOR OF RESPIRATORY THERAPY

PULMONARY AND CRITICAL CARE MEDICINE

EVERGREEN HEALTH, KIRKLAND, WA

CDC COCA CALL, APRIL 2, 2020


Disclaimer

The views expressed in this presentation are those of the author and do not necessarily represent the opinion of the Centers for Disease Control and Prevention.

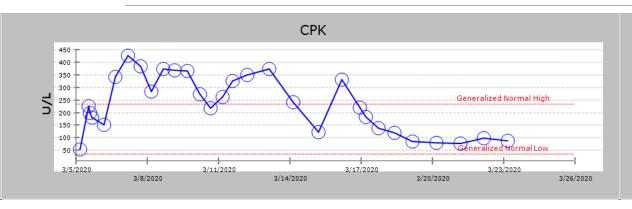
Case 1

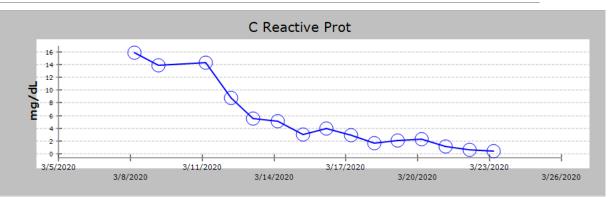
47-year-old man with 7 days of URI, 3 days of worsening dyspnea

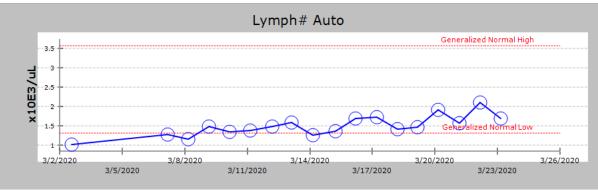
- HTN, obesity (BMI 36), untreated DM
- No tobacco
- Home medications included lisinopril, HCTZ, carvedilol
- At time of presentation, he was not tested for COVID-19

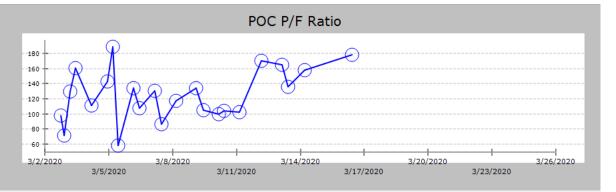
Admission AP CXR

Day 4 AP CXR


Hospital Course


- Intubation and institution of lung protective ventilation from day 2 through day 14
- Proned days 2-13 of hospitalization
 - Inhaled epoprostenol and NMB were not given
 - Extubated to HFNC
- Ceftriaxone and azithromycin discontinued after 7 days (no initial procalcitonin checked)
- On day 6, compassionate use Remdesivir was given for 10-day course
- On day 10, hydroxychloroquinine 400 BID, then daily x 5 days
- On day 21, weaned to room air, significant neuromuscular weakness


Notable Findings


- 3/2 Respiratory pathogen panel negative
- o 3/2 NP sample drawn, SARS-CoV-2 detected 3/6
- o 3/2 Bronchoscopy BAL 62% Ly, 13% PMN
- Abs lymphocyte 1.0x10³/uL
- O AST/ALT < 2x ULN</p>
- CRP 15.93 on 3/8 decreased to 1.11
- Normal NT-proBNP, Tnl
- Normal echocardiogram, except for mild pulmonary HTN

Lab Trends

Hospital course

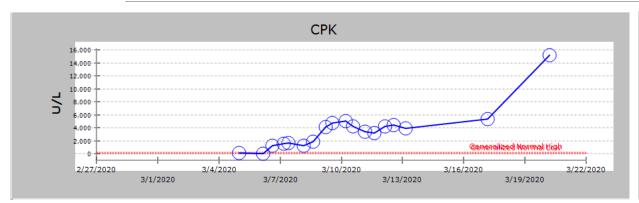
- Significant weakness and myopathy
 - No steroids or NMB were used
- Remains hospitalized more than four weeks after admission
 - Complicated below DVT, then psoas hematoma on anticoagulation
- COVID-19 testing remained positive after 3 weeks
- Repeat COVID-19 testing negative during 4th week

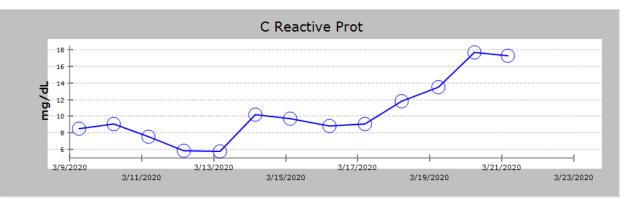
Case 2

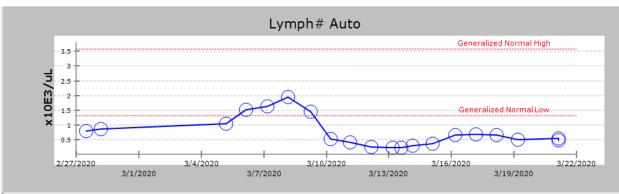
73-year-old man with controlled asthma, HL, BPH. Good functional capacity and active.

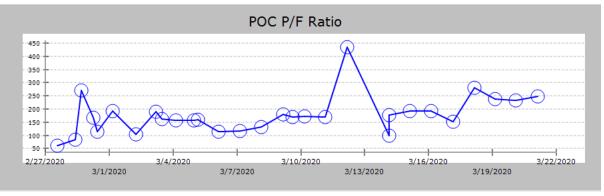
- 4 days prior to admit was seen in urgent care for 7 days of cough, fever, fatigue
- 2/27 presents to ED with SpO2 82%. Placed on HFNC, intubated within 24 hrs
- At the time of admission, RF for COVID-19 were not identified.
- COVID-19 testing was positive in 2/29

4 days prior to admission


Day of admission


F


Hospital Course


- Cefepime, Vancomycin
- Paralyzed, prone x 4 days
- Day 7 compassionate use remdesivir was added
- Weaned off vasopressors by day 7
- Day 11 worsening acute kidney injury
- Day 11 worsening shock and LVEF (normal troponin)
- CRRT started day 14
- o Comatose on day 24, failing SBT, remains on HD. MRI brain, CT brain and LP negative
- Acutely deteriorated further, goals changed to comfort-care and patient expired

Lab Trends

Bronchoscopy & Laboratory Results

- Day 1 Bronchoscopy with lavage 32% Ly, 34% PMN
- Procalcitonin 0.97
- Day 9 Bronch due to suspected VAP negative cultures. PMN 63%

Echocardiogram Results

- Day 1 normal transthoracic echocardiogram
- Day 4 limited TTE remains normal
- Day 9 LVEF 30% with global dysfunction

Evergreen ICU Summary

- >45 ICU admits
- >30 Required mechanical ventilation
- 4 Transferred for ECMO (3 were ultimately cannulated)
- 7 extubations (ages 44-84)
 - Includes 44 year old transfer for ECMO and RRT
- Duration of MV in extubated patients has been 5-13 days
- 4 required renal replacement therapy

Approach to care

- Early intubation
- Early use of proning, lung protective ventilation
- Light sedation, early PT
- Avoidance of corticosteroids, unless clear indication
- Enrollment in clinical trial for therapeutics
- Fluid restrictive approach
- Early discontinuation of antibiotics if low procalcitonin, negative cultures
- Consider early consultation for ECMO in young and sickest patients

Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19)

Surviving Sepsis ... Campaign •

Waleed Alhazzani MD, FRCP, MSc Associate Professor of Medicine McMaster University

COI Disclosures

- Chair of GUIDE Group, and
- Member of the GRADE Working Group

The views expressed in this presentation are those of the author and do not necessarily represent the opinion of the Centers for Disease Control and Prevention.

SSC COVID Guidelines Panel Members

Morten Hylander

Møller

Yaseen M. Arabi

Mark Loeb

Michelle Ng Gong

Eddy Fan

Simon Oczkowski

Mitchell M. Levy

Lennie Derde

Amy Dzierba

Bin Du

Michael Aboodi

Hannah Wunsch

Maurizio Cecconi

Younsuck Koh

Daniel S. Chertow

Kathryn Maitland

Fayez Alshamsi

Emilie Belley-Cote

Massimiliano Greco

Matthew Laundy

Jill S. Morgan

Jozef Kesecioglu

Allison McGeer

Leonard Mermel

Manoj J. Mammen

Paul E. Alexander

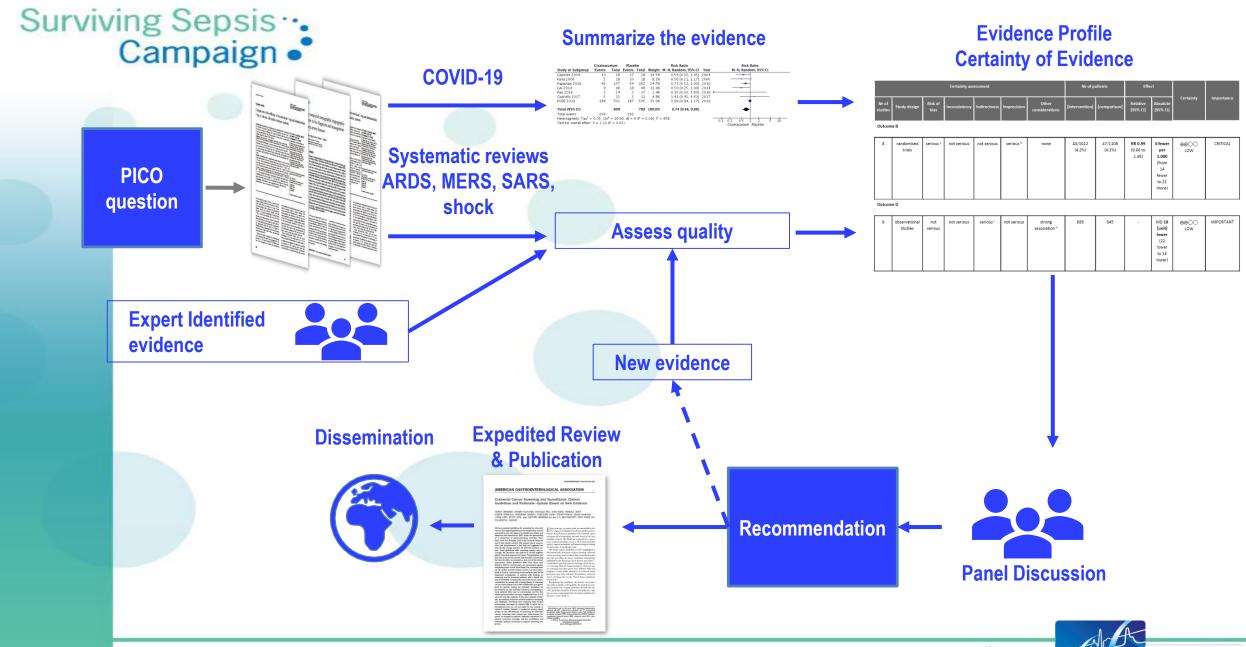
Amy Arrington

John Centofanti

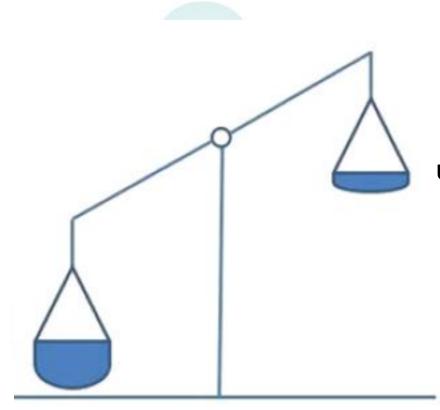
Giuseppe Citerio

Bandar Baw

Ziad A. Memish

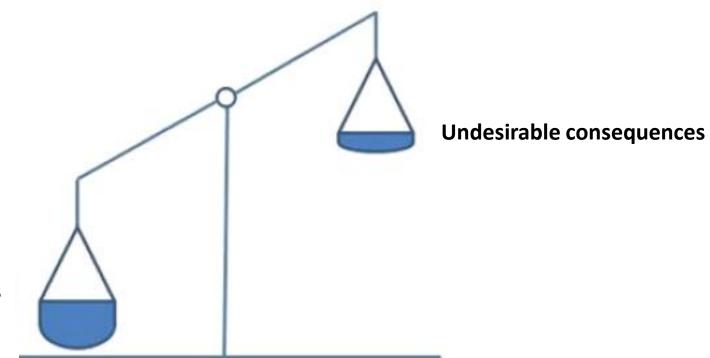

Naomi Hammond

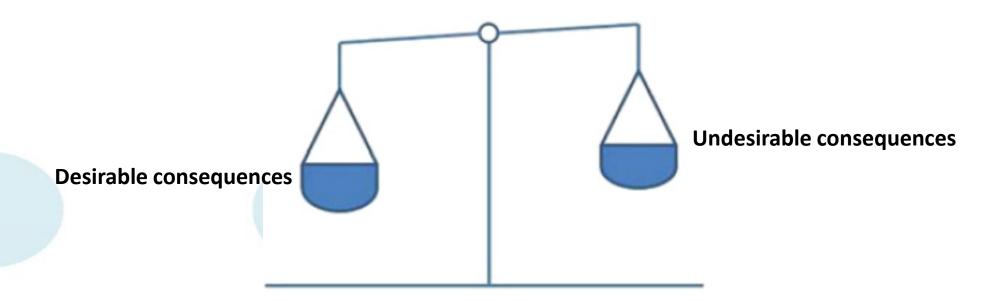
Frederick G. Hayden

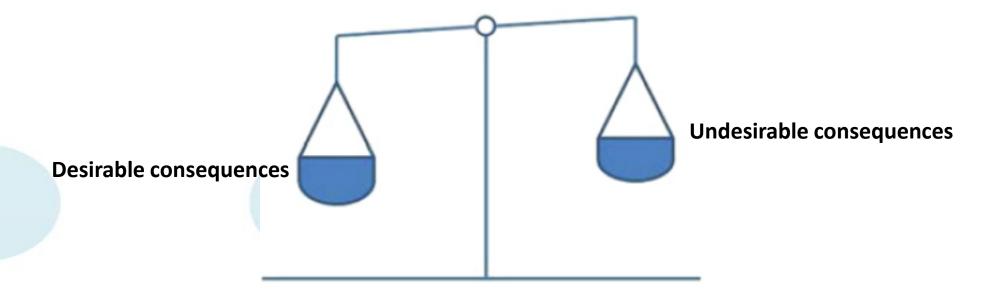

Laura Evans

Andrew Rhodes

Undesirable consequences


Desirable consequences


Strong Recommendation for the Intervention



Weak Recommendation for the Intervention

Patients

		Strong Recommendation	Weak Recommendation
	For Patients	Most individuals in this situation would want the recommended	The majority of individuals in this situation would
		course of action, and only a small	want the suggested course
ì		proportion would not	of action, but many would not

Clinicians

	Strong Recommendation	Weak Recommendation			
	Most individuals should receive the recommended course of action.	Different choices are likely to be appropriate for different patients			
For Clinicians	Formal decision aids are not likely to be needed to help individuals make decisions consistent with their values and preferences	Therapy should be tailored to the individual patient's circumstances, such as patients' or family's values and preferences			

Policymakers

	Strong Recommendation	Weak Recommendation
For Policymakers	Can be adapted as policy in most situations, including for use as performance indicators	Policies will likely be variable

Infection control

- Aerosol generating procedure vs not
- Negative pressure room vs regular room
- Surgical masks vs respirator masks

Aerosol Generating Procedures

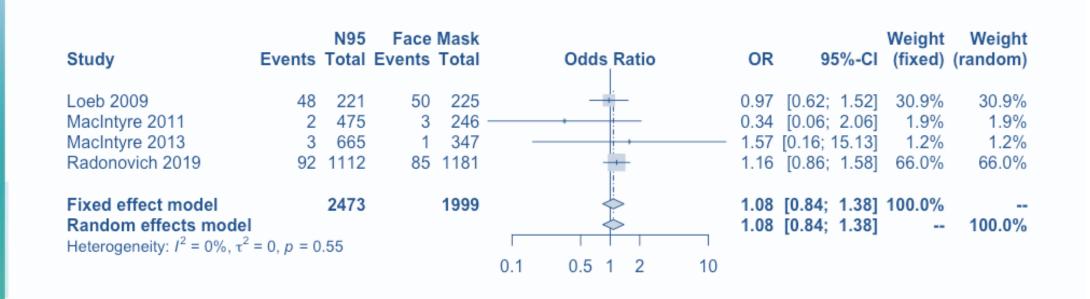
Procedure	Studies	Estimate
Intubation	4	OR 6.6 (2.3, 18.9)
Manipulation of BiPAP mask	1	OR 6.2 (2.2, 18.1)
CPR	1	OR 4.5 (1.5, 13.8)
Tracheostomy	1	OR 4.2 (1.5, 11.5)
Non-Invasive Ventilation	2	OR 3.1 (1.4, 6.8)
Manual Ventilation	1	OR 2.8 (1.3, 6.4)

Infection Control

 For healthcare workers performing aerosol generating procedures on patients with COVID-19 in the ICU, we recommend using fitted respirator masks (N95 respirators, FFP2, or equivalent), as compared to surgical/medical masks, in addition to other personal protective equipment.

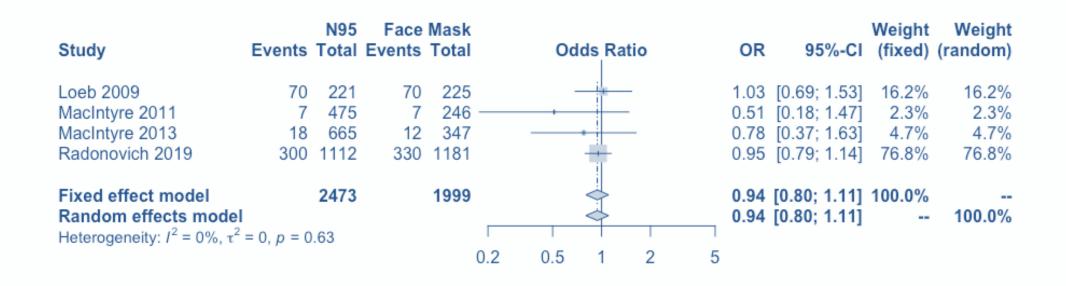
*FFP3 respirators are more commonly used in many parts of the world

Infection Control


- 1. Usual care for non-ventilated COVID-19 patients, or
- 2. Performing **non-AGP** on MV (closed circuit) patients with COVID-19

We suggest using surgical/medical masks, as compared to respirator masks, in addition to other personal protective equipment.

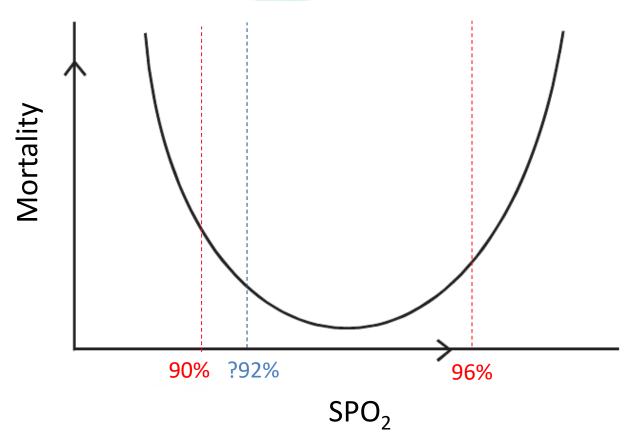
Laboratory Confirmed Influenza Infection


Society of

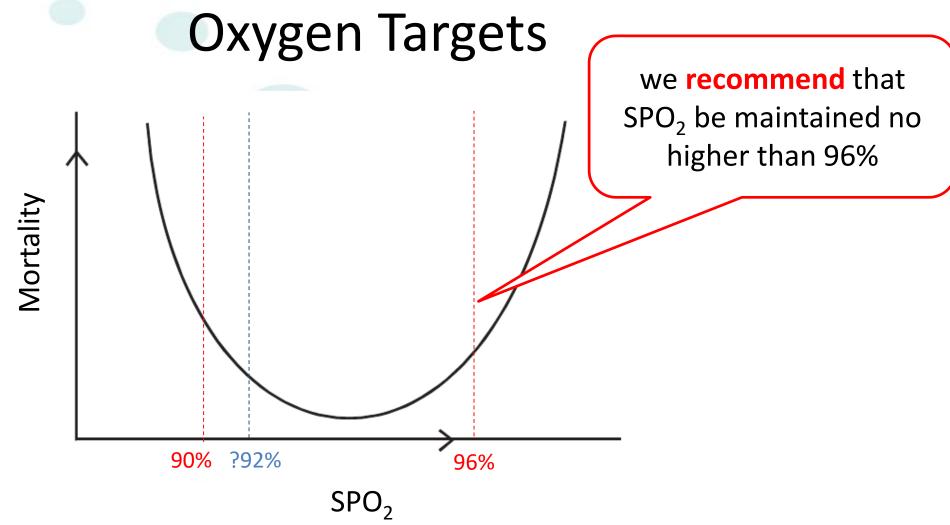
Critical Care Medicine

Laboratory Confirmed Respiratory Infection

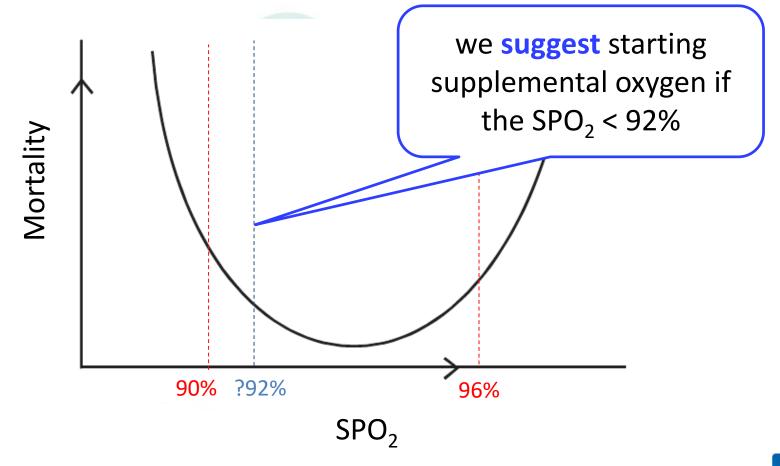
Society of


influenza-like illness

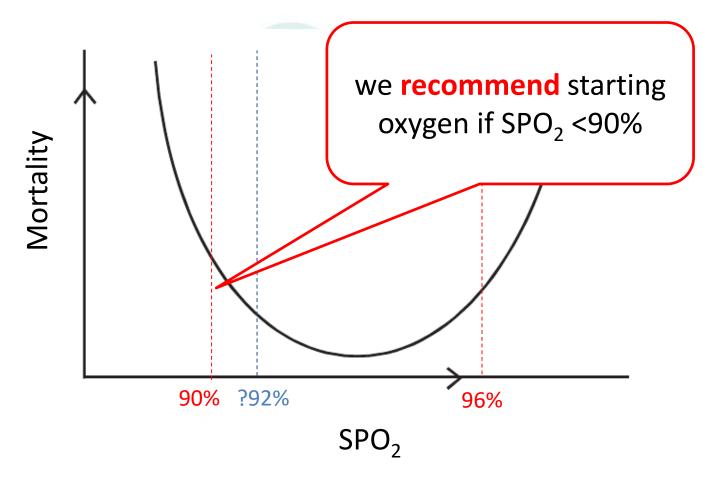
Study	N9 Events Total		Mask	Odds Ratio	OR	95%-CI	Weight	Weight (random)
Study	Lvents 10t	ai Events	Total	Odds Ratio	OK	33 /0-01	(IIXeu)	(randoni)
Loeb 2009	2 22	1 9	225	• <u> </u>	0.22	[0.05; 1.03]	4.7%	6.4%
MacIntyre 2011	2 47	5 2	246	· · · · ·	0.52	[0.07; 3.68]	2.9%	4.0%
MacIntyre 2013	5 66	5 2	347		1.31	[0.25; 6.77]	4.1%	5.7%
Radonovich 2019	57 111	2 73	1181	-	0.82	[0.57; 1.17]	88.2%	84.0%
Fixed effect model	247	3	1999			[0.55; 1.08]		
Random effects model Heterogeneity: $I^2 = 7\%$, τ^2		0.36			0.76	[0.51; 1.13]		100.0%
	, p			0.1 0.5 1 2 10				

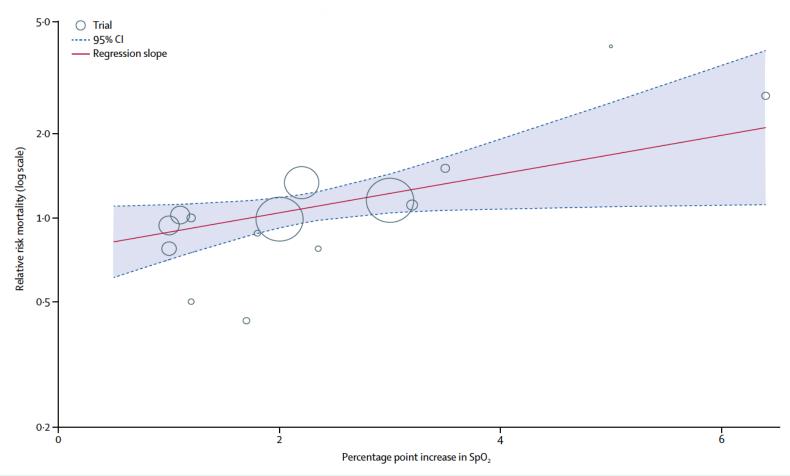


Oxygen Targets



Oxygen Targets




Oxygen Targets

SPO₂ and Mortality

Hypoxemia

 For adults with COVID-19 and acute hypoxemic respiratory failure despite conventional oxygen therapy, we suggest using HFNC over conventional oxygen therapy.

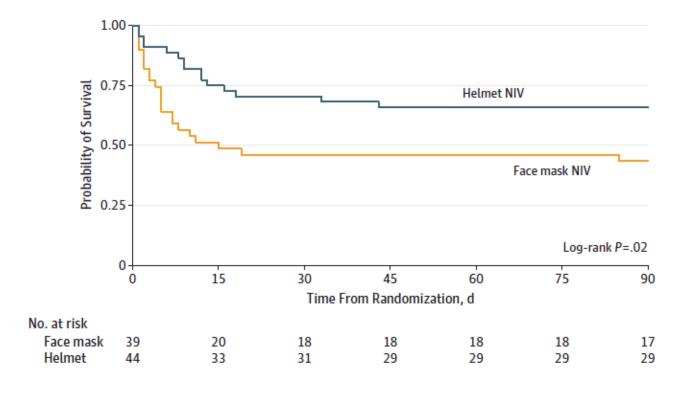
Hypoxemia

For adults with COVID-19 and acute hypoxemic
 respiratory failure, we suggest using HFNC over NIPPV.

Hypoxemia

 For adults with COVID-19 and acute hypoxemic respiratory failure, if HFNC is not available and no emergent indication for endotracheal intubation; we suggest a trial of NIPPV with close monitoring and short interval assessment for worsening of respiratory failure.

We were not able to make a recommendation regarding the use of helmet NIPPV compared to mask NIPPV, it is an option, but we are not certain about its safety or efficacy for COVID-19 patients.



Preliminary Communication | CARING FOR THE CRITICALLY ILL PATIENT

Effect of Noninvasive Ventilation Delivered by Helmet vs Face Mask on the Rate of Endotracheal Intubation in Patients With Acute Respiratory Distress Syndrome A Randomized Clinical Trial

JAMA. 2016 Jun 14;315(22):2435-41

Endotracheal Intubation

• For healthcare workers performing endotracheal intubation on patients with COVID-19, we recommend endotracheal intubation is performed by healthcare worker experienced with airway management, to minimize the number of attempts and risk of transmission.

Endotracheal Intubation

 For healthcare workers performing endotracheal intubation on patients with COVID-19, we suggest using video guided laryngoscopy, over direct laryngoscopy, if available.

Surviving Sepsis · · · Campaign • ·

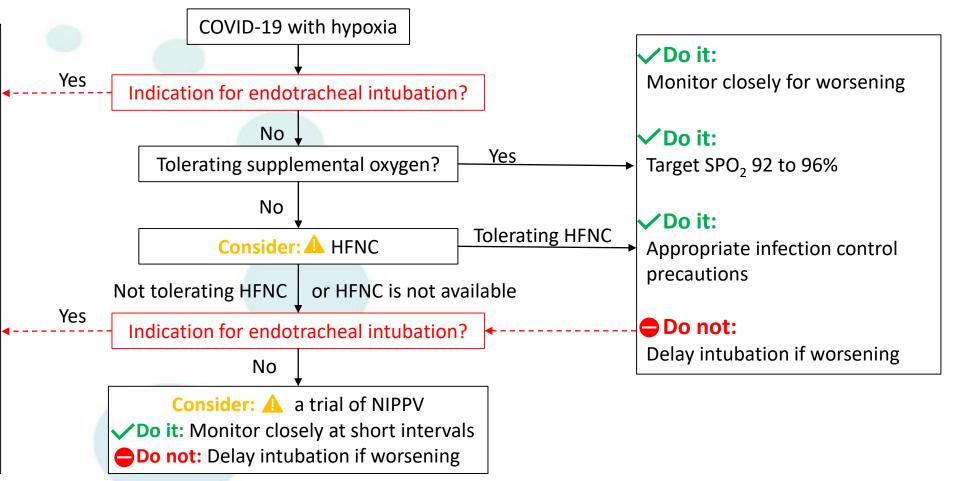
✓ Do it:

Endotracheal intubation

✓ Do it:

Expert in airway to intubate

✓ Do it:

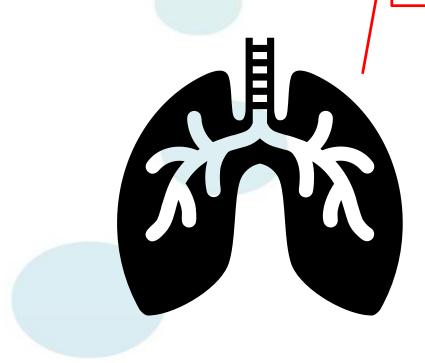

Use N-95/FFP-2 or equivalent and other PPE/infection control precautions

✓ Do it:

Minimize staff in the room

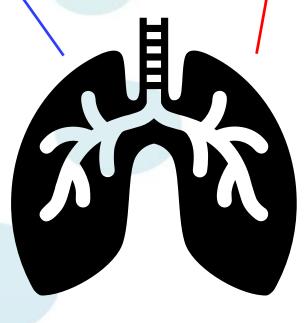
Consider: A if available

Video- laryngoscope



Acute Respiratory Distress Syndrome

We **recommend** using low Vt (4-8 mL/kg) and Targeting Pplat <30 cmH₂O

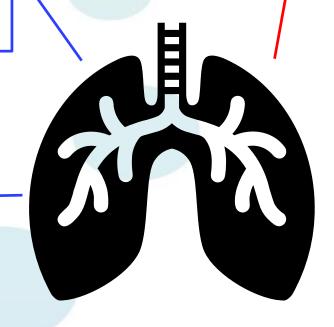

ARDS

Surviving Sepsis ... Campaign •

we suggest using a higher PEEP strategy

We recommend using low Vt (4-8 mL/kg) and Targeting Pplat <30 cmH₂O

Mod-Severe **ARDS**


Society of

Surviving Sepsis · · · Campaign • ·

we **suggest** using a higher PEEP strategy

we **suggest** using a conservative, over a liberal, fluid strategy.

We **recommend** using low Vt (4-8 mL/kg) and Targeting Pplat <30 cmH₂O

Mod-Severe ARDS

Prone Ventilation

 For mechanically ventilated adults with COVID-19 and moderate to severe ARDS, we suggest prone ventilation for 12 to 16 hours, over no prone ventilation.

Neuromuscular Blocking Agents (NMBA)?

NMBA

For MV adults with COVID-19 and moderate to severe
 ARDS, we suggest using as needed intermittent boluses of
 NMBA, over a continuous NMBA infusion, to facilitate
 protective lung ventilation.

NMBA

• In case of persistent ventilator dyssynchrony, requirement of ongoing deep sedation, prone ventilation, or persistently high Pplt; we suggest using a continuous NMBA infusion for up to 48 hours.

Corticosteroids

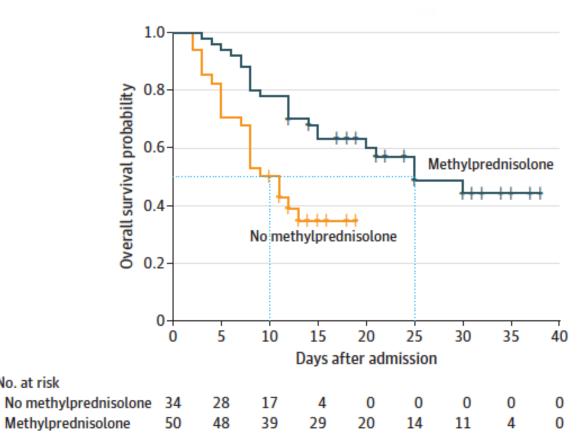
Steroids in ARDS - Mortality Outcome

		Corticosteroids		Control			Risk Ratio	Risk Ratio	
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
	⊔μ 2012	2	12	7	14	3.0%	0.33 [0.08, 1.31]		
	Meduri 2007	15	63	12	28	12.6%	0.56 [0.30, 1.03]	-	
	Rezk 2013	0	18	3	9	0.7%	0.08 [0.00, 1.32]	+	
	Steinberg 2006	26	89	26	91	19.7%	1.02 [0.65, 1.62]	+	
	Tongyoo 2016	34	98	40	99	26.8%	0.86 [0.60, 1.23]		
	Villar 2020	33	139	50	138	26.0%	0.66 [0.45, 0.95]	-	
	Zhao 2014	9	24	13	29	11.3%	0.84 [0.43, 1.61]		
ı	Total (95% CI)		443		408	100.0%	0.75 [0.59, 0.95]	•	
	Total events	119		151					
Heterogeneity: $Tau^2 = 0.02$; $Chl^2 = 7.69$, $df = 6$ (P = 0.26); $l^2 = 22\%$ Test for overall effect: $Z = 2.36$ (P = 0.02)							2%	har a'r	100
								0.01 0.1 1 10 Favours corticosteroids Favours control	100

Steroids in ARDS - DMV

		Corticosteroids			Control			Mean Difference		Mean Difference	
	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Н	Meduri 2007	5.25	1.46	63	11.1	3.9	28	21.9%	-5.85 [-7.34, -4.36]		
П	Rezk 2013	10.6	4.4	18	20.3	1.9	9	20.1%	-9.70 [-12.08, -7.32]		
	Tongyoo 2016	11.8	7.8	98	13.9	9	99	20.1%	-2.10 [-4.45, 0.25]		
	Villar 2020	14.3	13.3	139	20.2	14	138	18.0%	-5.90 [-9.12, -2.68]		
	Zhao 2014	10.5	4.6	24	11.6	4.6	29	19.8%	-1.10 [-3.59, 1.39]		
	Total (95% CI)			342			303	100.0%	-4.93 [-7.81, -2.06]		
Heterogeneity: Tau ² = 9.22; Chi ² = 31.72, df = 4 (P < 0.00001); I^2 = 87%										-10 -5 0 5 10	
Test for overall effect: $Z = 3.37$ (P = 0.0008)									Favours corticosteroids Favours control		

Steroids for Viral ARDS - Mortality


All observational studies

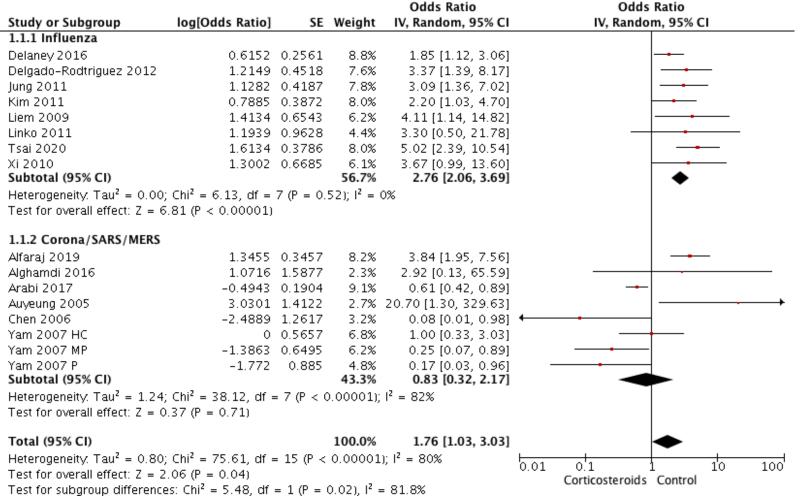
					Odds Ratio	Odds Ratio
ı	Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
ı	Brun-Buisson 2011	0.9517	0.3066	21.5%	2.59 [1.42, 4.72]	-
Н	Cao 2016	0.6152	0.3849	19.1%	1.85 [0.87, 3.93]	 •
	Kim 2011	0.5878	0.4892	16.2%	1.80 [0.69, 4.70]	 •
	Li 2017	-0.4005	0.1919	24.6%	0.67 [0.46, 0.98]	
	Martin-Loeches 2011	0.0953	0.4023	18.6%	1.10 [0.50, 2.42]	-
	Total (95% CI)			100.0%	1.40 [0.76, 2.57]	•
	Heterogeneity. Tau ² = (•	-	P = 0.003	2); $I^2 = 77\%$ 0.01	0.1 1 10 100
	Test for overall effect: Z	C = 1.09 (P = 0.28))		0.02	Corticosteroids Control

No. at risk

Direct Evidence

Retrospective study N = 201with COVID-19 pneumonia

JAMA Intern Med. 2020 Mar 13.


Corticosteroids

- For mechanically ventilated adults with COVID-19 and ARDS, we suggest using systemic corticosteroids over not using corticosteroids.
- Remark: The majority of our panel support a weak recommendation (i.e. suggestion) to use steroids in the sickest patients with COVID-19 and ARDS. However, because of the very low quality evidence, some experts on the panel preferred not to issue a recommendation until higher quality direct-evidence is available.

Steroids for Viral Pneumonia - Mortality

ΑII

studies

observational

Corticosteroids

 For mechanically ventilated adults with COVID-19 and respiratory failure (without ARDS), we suggest against the routine use of systemic corticosteroids

Surviving Sepsis ... Campaign •

COVID-19 with mild ARDS

/Do:

Vt 4-8 ml/kg and P_{plat} <30 cm H₂O

Do:

Investigate for bacterial infection

∠Do:

Target SPO2 92% - 96%

CONSIDER:

Conservative fluid strategy

CONSIDER:

Empiric antibiotics

Uncertain:

Systemic corticosteroids

COVID-19 with Mod to Severe ARDS

CONSIDER:

Higher PEEP

CONSIDER:

NMBA boluses to facilitate ventilation targets

CONSIDER: If PEEP responsive

Traditional Recruitment maneuvers

CONSIDER:

CONSIDER: if proning, high P_{plt}, asynchrony

NMBA infusion for 24 h

Don't do:

Staircase Recruitment maneuvers

CONSIDER:

Short course of systemic corticosteroids

Rescue/Adjunctive therapy

CONSIDER: if proning, high P_{plt}, asynchrony

NMBA infusion for 24 h

CONSIDER:

Prone ventilation 12 -16 h

CONSIDER: A STOP if no quick response

A trial of inhaled Nitric Oxide

Society of

CONSIDER: A follow local criteria for ECMO

V-V ECMO or referral to ECMO center

Antibiotics

- For mechanically ventilated patients with COVID-19 and respiratory failure, we suggest using empiric antimicrobials/antibacterial agents, compared to no antimicrobials.
- Remark: if the treating team initiates empiric antimicrobials, they should assess for de-escalation daily, and re-evaluate the duration of therapy and spectrum of coverage based on the microbiology results and the patient's clinical status.

Therapy

For critically ill adults with COVID-19, we suggest against the routine use of standard intravenous immunoglobulins.

For critically ill adults with COVID-19, we suggest against the routine use of convalescent plasma.

For critically ill adults with COVID-19, we suggest against the routine use of lopinavir/ritonavir.

Therapy

- Insufficient evidence to support recommendations for:
 - Antivirals
 - Hydroxychloroquine
 - Immunomodulators

Hemodynamic Support

 For the acute resuscitation of adults with COVID-19 and shock, we suggest using a conservative, over a liberal fluid strategy

Outcomes	№ of participants (studies)	Relative effect (95% CI)	Certainty of the evidence
All-cause Mortality	637 (9 RCTs)	RR 0.87 (0.69–1.10)	VERY LOW
Serious Adverse Events	637 (9 RCTs)	RR 0.91 (0.78–1.05)	VERY LOW

Hemodynamic Support

- For adults with **COVID-19 and refractory shock**, we suggest using low-dose corticosteroid therapy ("shock-reversal"), over no corticosteroid therapy.
- Remark: typical corticosteroid regimen in septic shock is intravenous hydrocortisone 200 mg per day either as an infusion or intermittent doses.

Outcomes	№ of participants (studies)	Relative effect (95% CI)	Certainty of the evidence
Short-term Mortality (<90 days)	7297	RR 0.96	MODERATE
	(22 RCTs)	(0.91–1.02)	
Long-term Mortality (>90 days)	5667	RR 0.96	MODERATE
	(5 RCTs)	(0.90-1.02)	
Serious Adverse Events	5908	RR 0.98	LOW
	(10 RCTs)	(0.90-1.08)	

Special Thank You

- Guidelines panelists
- Methodologists
- SCCM and ESICM
- Colleagues around the world caring for patients

CDC COVID-19 Resources

- Coronavirus Disease 2019 Website https://www.cdc.gov/COVID19
- Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html
- Information for Clinicians on Therapeutic Options for COVID-19 Patients https://www.cdc.gov/coronavirus/2019-ncov/hcp/therapeutic-options.html
- Healthcare Professionals: Frequently Asked Questions and Answers https://www.cdc.gov/coronavirus/2019-ncov/hcp/faq.html
- Discontinuation of Transmission-Based Precautions and Disposition of Patients with COVID-19 in Healthcare Settings
 https://www.cdc.gov/coronavirus/2019-ncov/hcp/disposition-hospitalized-patients.html
- What Healthcare Personnel Should Know about Caring for Patients with Confirmed or Possible COVID-19 Infection https://www.cdc.gov/coronavirus/2019-ncov/hcp/caring-for-patients.html
- Interim Guidelines for Collecting, Handling, and Testing Clinical Specimens from Patients Under Investigation for COVID-19
 https://www.cdc.gov/coronavirus/2019-nCoV/lab/guidelines-clinical-specimens.html
- Rapid Guidelines for Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with COVID-19
 https://www.sccm.org/getattachment/Disaster/SSC-COVID19-Critical-Care-Guidelines.pdf?lang=en-US

To Ask a Question

- Using the Webinar System
 - Click on the Q&A button in the Zoom webinar system.
 - Type your question in the Q&A box.
 - Submit your question.
 - You may also email your question to <u>coca@cdc.gov.</u>
- For media questions, please contact CDC Media Relations at 404-639-3286 or email media@cdc.gov.
- For more Clinical Care information on COVID-19
 - Call COVID-19 Clinical Call Center at 770-488-7100 (24 hours/day).
 - Refer patients to state and local health departments for COVID-19 COVID19 testing and test results.
 - Clinicians should NOT refer patients to CDC to find out where or how to get tested for COVID-19 OR to get COVID-19 test results.
 - Visit CDC's Coronavirus (COVID-19) website: https://www.cdc.gov/coronavirus.

Today's COCA Call Will Be Available On-Demand

When: Soon after the live call

What: Video recording

Where:

On the COCA Call webpage at

https://emergency.cdc.gov/coca/calls/2020/callinfo_040220.asp

COCA Products & Services

COCA Call Announcements contain all information subscribers need to participate in COCA Calls. COCA Calls are held as needed.

Monthly newsletter that provides information on CDC training opportunities, conference and training resources, the COCA Partner Spotlight, and the Clinician Corner.

As-needed messages that provide specific, immediate action clinicians should take. Contains comprehensive CDC guidance so clinicians can easily follow recommended actions.

COCA Products & Services

Monthly newsletter providing updates on emergency preparedness and response topics, emerging public health threat literature, resources for health professionals, and additional information important during public health emergencies and disasters.

Informs clinicians of new CDC resources and guidance related to emergency preparedness and response. This email is sent as soon as possible after CDC publishes new content.

CDC's primary method of sharing information about urgent public health incidents with public information officers; federal, state, territorial, and local public health practitioners; clinicians; and public health laboratories.

Join COCA's Mailing List

Receive information about:

- Upcoming COCA Calls
- Health Alert Network (HAN) messages
- CDC emergency response activations
- Emerging public health threats
- Emergency preparedness and response conferences and training opportunities

Join Us on Facebook

Thank you for joining us today!

emergency.cdc.gov/coca