Basics of Mechanical Ventilation for the COVID-19 Patient

Hooman Poor, M.D. Assistant Professor of Medicine Director of Pulmonary Vascular Disease, Mount Sinai-National Jewish Health Respiratory Institute Division of Pulmonary, Critical Care and Sleep Medicine Zena and Michael A. Wiener Cardiovascular Institute Icahn School of Medicine at Mount Sinai

Financial Disclosures

None

Talk Objectives

- discuss the rationale of positive pressure ventilation for patients with ARDS secondary to COVID-19
- review the basics of volume-controlled ventilation
- explain how to set and adjust the important parameters in volume-controlled ventilation for COVID-19 patients with ARDS

COVID-19 Causes ARDS

ARDS Definition:

- acute
- bilateral opacities
- PaO_2/F_1O_2 ratio < 300 mmHg with PEEP \geq 5 cmH₂O
- not completely explained by cardiac failure or volume overload

ARDS Pathophysiology

- lung injury and inflammation create leaky capillaries and leaky alveoli
- alveoli fill up with fluid
- gas exchange impaired
- alveoli collapse
- lungs become stiffer
- patients ultimately develop respiratory failure

Ventilator Support in ARDS

- deliver high amounts of oxygen
 - high F_1O_2
- provide positive pressure to reduce work of breathing
 - ventilator <u>PUSHES</u> air in so muscles of inspiration do not have to work as hard to <u>SUCK</u> air in
- provide positive end-expiratory pressure (PEEP)
 - prevents open alveoli from collapsing

How to Inflate Lungs

- a) increase pressure inside of the lungs (P_{alv})
- b) decrease the pressure outside of the lungs (P_{pl})

P_{alv} = alveolar pressure P_{pl} = pleural pressure

spontaneous ventilation

spontaneous ventilation

positive pressure ventilation

$$V = I \times R$$

spontaneous ventilation

 $Q = P \downarrow air - P \downarrow alv / R$

Suck air into lungs

P_{air} = proximal airway pressure P_{alv} = alveolar pressure Q = flow R = resistance

positive pressure ventilation

$$Q=P\downarrow air - P\downarrow alv /R$$

Push air into lungs

P_{air} = proximal airway pressure P_{alv} = alveolar pressure Q = flow

Regardless of the mode of ventilation...

- the ventilator increases airway pressure for a set time
 - airflow into the patient
 - culminates in delivered tidal volume
- "phase variables" determine the mode of ventilation
 - ventilator instructions
 - determine "when" and "how" breaths delivered

 $Q = P \downarrow air - P \downarrow alv / R$

Phase Variables: "Anatomy of a Breath"

- trigger \rightarrow when inspiration begins
- target \rightarrow how flow is delivered during inspiration
- cycle \rightarrow when inspiration ends
- baseline \rightarrow proximal airway pressure during expiration

Modes of Ventilation

For the sake of simplicity, use volume-controlled ventilation (VCV)

What mode of ventilation should I use?

Trigger

- Who initiates the breath?
 - ventilator
 - patient
- ventilator-triggered
 - aka CONTROL
 - variable that is set \rightarrow time
 - set respiratory rate (frequency = 1/time)
 - RR 12 bpm is one breath every 5 seconds
- patient-triggered
 - aka ASSIST
 - flow or pressure changes sensed by ventilator

Assist-Control → Hybrid Trigger

assist trigger + control trigger = assist-control (A/C)

"A/C" refers only to the trigger.

> Volume-controlled ventilation uses A/C as the trigger mechanism.

How Much Assist? How Much Control?

control respiratory rate

- 10 bpm
- breath every 6 sec

neural respiratory rate

- 20 bpm
- breath every 3 sec

What percentage of the breaths will be assist, what percentage will be control?

100% ASSIST

Control rate clock resets after an "assist" breath.

How Much Assist? How Much Control?

control respiratory rate

- 10 bpm

neural respiratory rate

- 20 bpm
- breath every 3 sec

How Much Assist? How Much Control?

control respiratory rate

- 30 bpm

- breath every 2 sec

neural respiratory rate

- 20 bpm
- breath every 3 sec

What percentage of the breaths will be assist, what percentage will be control?

100% CONTROL

Target

How is flow during inspiration determined?

- flow rate is set in volume-controlled ventilation

VCV is a Flow-Targeted Mode

VCV is a Flow-Targeted Mode

 P_{air} will change with changes in respiratory system $Q = P \downarrow air - P \downarrow alv / R$

Q will not change with changes in respiratory system

Target

Target

 $O = P \downarrow air - P \downarrow alv / R$ Proximal airway No patient Patient inspiratory effort inspiratory effort pressure sustained inspiratory effort Time Divot in pressure $P\downarrow air - P\downarrow alv / R$ waveform flow-targeted mode flow unchanged Ptair 🕂 Ptalv / 🧎

Cycle

When does inspiration end?

- volume is set in volume-controlled ventilation

Low Tidal Volume Ventilation

- high tidal volume in ARDS causes lung stretch and further lung damage
 - "volutrauma"
- low tidal volume ventilation is essential
 - set tidal volume to 6 cc/kg of ideal body weight
 - can be uncomfortable for patients (will likely need sedation, and sometimes even paralysis)

Baseline

- What is proximal airway pressure during expiration?
- aka PEEP

PEEP in ARDS

- repetitive opening and closing of alveoli causes further lung damage
 - "atelectrauma"
- PEEP prevents open alveoli from closing
- maintaining alveoli open will improve gas exchange

NIH NHLBI ARDS Clinical Network Mechanical Ventilation Protocol Summary

INCLUSION CRITERIA: Acute onset of

- 1. $PaO_2/FiO_2 \leq 300$ (corrected for altitude)
- 2. Bilateral (patchy, diffuse, or homogeneous) infiltrates consistent with pulmonary edema
- 3. No clinical evidence of left atrial hypertension

PART I: VENTILATOR SETUP AND ADJUSTMENT

- 1. Calculate predicted body weight (PBW) **Males** = 50 + 2.3 [height (inches) - 60] **Females** = 45.5 + 2.3 [height (inches) -60]
- 2. Select any ventilator mode
- 3. Set ventilator settings to achieve initial $V_T = 8 \text{ ml/kg PBW}$
- 4. Reduce V_T by 1 ml/kg at intervals \leq 2 hours until V_T = 6ml/kg PBW.
- 5. Set initial rate to approximate baseline minute ventilation (not > 35 bpm).
- 6. Adjust V_T and RR to achieve pH and plateau pressure goals below.

OXYGENATION GOAL: PaO₂ 55-80 mmHg or SpO₂ 88-95%

Use a minimum PEEP of 5 cm H_2O . Consider use of incremental FiO₂/PEEP combinations such as shown below (not required) to achieve goal.

Lower PEEP/higher FiO2

FiO ₂	0.3	0.4	0.4	0.5	0.5	0.6	0.7	0.7
PEEP	5	5	8	8	10	10	10	12

FiO ₂	0.7	0.8	0.9	0.9	0.9	1.0
PEEP	14	14	14	16	18	18-24

Higher PEEP/lower FiO2										
FiO ₂	0.3	0.3	0.3	0.3	}	0.3	0.4	0.4	0.5	
PEEP	5	8	10	12		14	14	16	16	
FiO ₂	0.5	0.5-0	.8	0.8	(0.9	1.0	1.0		
PEEP	18	20		22		22	22	24		
									-	

PLATEAU PRESSURE GOAL: \leq 30 cm H₂O

Check Pplat (0.5 second inspiratory pause), at least q 4h and after each change in PEEP or $V_{\text{T}}.$

If Pplat > 30 cm H₂O: decrease V_T by 1ml/kg steps (minimum = 4 ml/kg).

If Pplat < 25 cm H₂O and V_T< 6 ml/kg, increase V_T by 1 ml/kg until Pplat > 25 cm H₂O or V_T = 6 ml/kg.

If Pplat < 30 and breath stacking or dys-synchrony occurs: may increase V_T in 1ml/kg increments to 7 or 8 ml/kg if Pplat remains \leq 30 cm H₂O.

Use the High PEEP Ladder

Higher PEEP/lower FiO2

FiO ₂	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.5
PEEP	5	8	10	12	14	14	16	16

FiO ₂	0.5	0.5-0.8	0.8	0.9	1.0	1.0]
PEEP	-10	20	22	22	22	24	16

- COVID-19 patients appear to be very "PEEPresponsive"
- do not increase PEEP above 16 cm H₂O without guidance from a critical care physician

Plateau Pressure (P_{pl})

- estimate of the maximum pressure in the alveolus during the respiratory cycle
- to measure P_{pl}, perform inspiratory pause maneuver
 - after tidal volume is delivered, expiratory valve remains shut and air does not leave patient
 - pressure measured at end of maneuver is called "plateau pressure"
- high P_{pl} can lead to "barotrauma"
 - pneumothorax, pneumomediastinum
 - goal P_{pl} in ARDS is \leq 30 cm H_2O

Plateau Pressure

Your COVID-19 Patient Just Got Intubated

- place on volume-controlled ventilation
- set respiratory rate to 20 bpm
- set tidal volume to 6 cc/kg of <u>ideal body weight</u>
- set F_1O_2 to 100%
- set PEEP to 15 cm H₂0
- check plateau pressure (P_{pl})
 - if $P_{pl} > 30 \text{ cm H}_2O$, reduce tidal volume to 5 cc/kg
 - if P_{pl}^{r} still > 30 cm H₂O, call for help
- ensure patient is well sedated
- check ABG or VBG 30 minutes after settings adjusted to ensure appropriate pH
 - if pH < 7.2, increase RR (maximum of 35 bpm)

Your COVID-19 Patient is Improving

- wean F₁O₂ and PEEP as per the ARDSnet ladder to ensure SpO₂ 88-95%
- wait at least 12 hours between changes in PEEP

Higher PEEP/lower FiO2

FiO ₂	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.5
PEEP	5	8	10	12	14	14	16	16

FiO ₂	0.5	0.5-0.8	0.8	0.9	1.0	1.0	
PEEP	10	20	22	22	22	24	16
	-	-					1 — —

Further Reading

Available free online via the Levy Library website

Good Luck!

