Objectives

- Outline the determinants of oxygen balance
- C Recognize disorders of oxygen delivery
- Identify principles and limitations of techniques for monitoring oxygen balance
- C Explain the use of acid-base status in monitoring the seriously ill patient

- 67-year-old woman status post cholecystectomy 1 day ago
- Oevelops shortness of breath and altered mental status
- Vital signs: HR 136 beats/min, BP 106/55 mm Hg, RR 28 breaths/min, Spo₂ 91% (room air)
- C Benign abdominal examination

What monitoring should be immediately implemented?

What monitoring should be immediately implemented? (Select all that apply)

- A. Blood pressure
- **B.** Heart rate
- **C.** Respiratory rate
- **D.** Oxyhemoglobin saturation
- E. Temperature
- F. Intra-abdominal pressure

- 67-year-old woman status post cholecystectomy 1 day ago
- Oevelops shortness of breath and altered mental status
- Vital signs: HR 136 beats/min, BP 106/55 mm Hg, RR 28 breaths/min, Spo₂ 94% (room air)
- Benign abdominal examination

What monitoring should be immediately implemented?

What are the goals of monitoring in this patient?

FCCS Tissue Oxygenation

Cannot be directly measured or monitored

Which component of oxygen balance is more likely to be modified by clinical interventions?

Society of Critical Care Medicine

Copyright 2016 Society of Critical Care Medicine

Determinants of O₂ Delivery

- Cardiac output (blood flow)
- O₂ content of arterial blood
 - Hemoglobin
 - Oxyhemoglobin saturation
 - Pao₂

FCCS

Oxygen Reserve

Society of Critical Care Medicine

CCS

Copyright 2016 Society of Critical Care Medicine

Preload also affects contractility

- 67-year-old woman status post cholecystectomy 1 day ago
- Oevelops shortness of breath and altered mental status
- Vital signs: HR 136 beats/min, BP 106/55 mm Hg, RR 28 breaths/min, Spo₂ 94% (room air)

How would you evaluate oxygen delivery in this patient?

- A. Heart rate
- **B.** Mean arterial pressure
- **C.** Venous blood gas analysis
- **D.** Pulse oximetry

- 67-year-old woman status post cholecystectomy 1 day ago
- Over Develops shortness of breath and altered mental status
- Vital signs: HR 136 beats/min, BP 106/55 mm Hg, RR 28 breaths/min, Spo₂ 94% (room air)

How would you determine oxygen delivery in this patient?

Cardiac output

Societyof

he Intensive Care Profession

Critical Care Medicine

C Arterial oxygen content

What does a pulse oximeter measure?

 \bigcirc Spo₂ vs Sao₂

What factors might affect the accuracy of the pulse oximeter measurement?

Blood Pressure Measurement

Blood pressure = cardiac output x systemic vascular resistance

What options would you consider for monitoring blood pressure in this patient?

- Manual noninvasive device
- C Automated noninvasive device
- C Arterial cannulation

- Automated blood pressure device and pulse oximeter applied
- Spo₂ 91% (room air), HR 135 beats/min, BP 96/50 mm Hg
- ─ Hemoglobin 11.5 g/dL

Is oxygen delivery sufficient to maintain an adequate oxygen balance?

Is oxygen delivery sufficient to maintain adequate oxygen balance? (Choose the best answer)

A. Yes
B. No
C. More information is needed

- Automated blood pressure device and pulse oximeter applied
- SpO₂ 91% (room air), HR 135 beats/min, BP 96/50 mm Hg
- Hemoglobin 11.5 g/dL

Is oxygen delivery sufficient to maintain an adequate oxygen balance?

Central venous oxyhemoglobin saturation (Scvo₂)

C Lactate concentration

Society of

The Intensive Care Professionals

Critical Care Medicine

Copyright 2016 Society of Critical Care Medicine

FCCS Venous Oxyhemoglobin Saturation

Copyright 2016 Society of Critical Care Medicine

FCS Central Venous Oxyhemoglobin Saturation

What does a low Scvo₂ mean?

What does a normal Scvo₂ mean?

Lactate

- Product of anaerobic metabolism with cellular hypoxia
- Elevated concentrations
 - Inadequate oxygen supply
 - Drugs
 - Hepatic dysfunction

FCCS

- Repeat vital signs: HR 135 beats/min, BP 96/50 mm Hg, RR 28 breaths/min, T 101°F (38.3°C), Spo₂ 92% (6 L/min nasal cannula)
- Arterial blood gas: pH 7.32, Paco₂ 32 mm Hg (4.3 kPa), Pao₂ 68 mm Hg (9.1 kPa)
- Na 142 mmol/L, K 4.0 mmol/L, CI 106 mmol/L, HCO₃ 16 mmol/L, BUN 28 mg/dL, creatinine 1.4 mg/dL

Does the acid-base status suggest the patient is seriously ill?

Acid-Base Analysis

- Determine overall acid-base condition (acidemia or alkalemia)
- Determine if primary process is metabolic or respiratory
- Determine if acute or chronic process in respiratory disturbance
- Determine if respiratory compensation adequate in metabolic process
- Calculate anion gap (always)

Acid Base 101

Look at the pH.

Expect an increase in the bicarbonate by 1 meq/L for every 10 mm Hg rise in the $PaCO_2$ in respiratory acidosis.

Calculate the anion gap.

Greater than or equal to $20 \rightarrow$ metabolic acidosis no matter what.

The body does not generate a large enough anion gap to compensate for a primary disorder.

Calculate the excess anion gap (Δ gap).

12 (10-14) is the standard, so subtract the anion gap from 12.

Next, add this value to your measured bicarbonate. If this is greater than 30, you have an underlying metabolic alkalosis.

If this is less than 23 (a normal bicarbonate value), you have an underlying NON gap metabolic acidosis.

The reason for this is because 1 mmol of unmeasured acid should titrate 1 mmol of bicarbonate; hence a Δ anion gap should equal the Δ bicarb under normal circumstances.

Metabolic Acidosis

If you are still second guessing yourself, use Winter's formula for metabolic acidosis to make sure your PaCO₂ is what it should be.

 $PaCO_2 = 1.5 \text{ x measured } HCO_3^{-} + 8 (\pm 2)$

One other trick for metabolic acidosis: the expected $PaCO_2$ should approximate the last 2 digits of the pH value. For example, the expected $PaCO_2$ for a primary metabolic acidosis with a pH of 7.25 is 25.

Stewart Approach

Strong Ion Gap = SID

= [strong cations] – [strong anions]

 $\approx Na^+ - Cl^-$

≈ 38 (140-102)

ACIDOSIS usually means extra anions.

The strong ion difference is **DECREASED**.

Seen in disorders where cations are decreased (potassium, sodium) or where anions are increased (hyperchloremia, lactatemia, ketoacids, etc.).

ALKALOSIS usually means extra cations.

The strong ion difference is **INCREASED**.

Seen in disorders where cations are increased (hyperkalemia, hypercalcemia, hypernatremia) or where anions are decreased (hypoalbuminemia, hypochloremia)

[Analysis Module start] • [Search the Database] • [Warning] • [Glossary] • [downloads] • [write to us] • • • • [intensive care and emergency medicine ultrasound]

insert new data into the acidbase database

please - be careful choosing the units for your measurements!

there are plenty of different units used around the world - preferentially use SI units!

chemical data							
required data				optional data			
pН				lithium		mmol/l	
BE (base			required for cross-checking	Mg		mmol/l ᅌ	
excess) read more!		mEq/l	purposes	Ca			
Na read				(total, not free or "ionised") read more!		mmol/l ᅌ	
more! about the influence		mmol/l		phosphate		mmol/l ᅌ	
of serum Na ⁺ on its ionic				lactate		mmol/I ᅌ	registering this value is strongly recommended!
activity							only useful for calculating UIX (unknown ion excess)
normal value for	range 137 - 145	mmol/l		haemoglobin		mmol/l ᅌ	(if not given, a value of 6 mmol/l / 100g/l is assumed.)
Na	adjust for the values at your institution!			osmolality			
К		mmol/l		(freezepoint method)		mosmol/l	only required if you want to calculate the osmotic gap,
СІ		mmol/l	may you make an <i>educated</i> <i>guess</i> about chloride? NO - why???: read more!	glucose		mmol/l ᅌ	strongly recommended in cases of intoxication or ketoacidosis
normal	range		NO-WHYPP: Teau more:	urea		mmol/l ᅌ	
value for Cl	102 - 108 adjust for the values at your institution!	mmol/l		ethanol or other osmotically			do not register anionic substances like hydroxybutyrate (because their
PCO2		kPa ᅌ	be careful choosing the unit! (mmHg or kPa - this is essential!)	active substances (1 %o ethanol is 21 mosmol/l)		mosmol/l	osmotic effect is already accounted for by the corresponding kation)
albumin the most prominent of the weak acids		g/l 🗘	may you make an <i>educated guess</i> about albumin? yes - BUT: read more!	did you "buffer" with trometamol (THAM), e.g.	yes?	mmol/l	

Society of Critical Care Medicine The Intensive Care Professionals

 \bigcirc pH 7.32, PaCO₂ 32 mm Hg (4.3 kPa), PaO₂ 68 mm Hg (9.1 kPa)

 \bigcirc Na 142 mmol/L, K 4.0 mmol/L, CI 106 mmol/L, HCO₃ 16 mmol/L

Acidemia or alkalemia? →Acidemia

Respiratory or metabolic? →Metabolic

Adequate respiratory compensation? \rightarrow Yes

 $PaCO_2 = 1.5 [HCO_3] + 8 \pm 2 \rightarrow 1.5 \times 16 + 8 = 32$

Societyof

Critical Care Medicine

- pH 7.32, Paco₂ 32 mm Hg (4.3 kPa), Pao₂
 68 mm Hg (9.1 kPa)
- \bigcirc Na 142 mmol/L, K 4.0 mmol/L, CI 106 mmol/L, HCO₃ 16 mmol/L
 - Anion gap? $AG = [Na] ([CI] + [HCO_3])$ $\rightarrow 142 - 122 = 20$

What is the expected AG if albumin = 2.0 g/dL?

 Expected AG decreases by 2.5-3 mmol/L for every 1 g/dL decrease in albumin
 Expected AG = 12 - (5-6) = 6-7

- Patient is intubated for worsening oxygenation, Spo₂ 95% (FIO₂ 0.60)
- Arterial catheter inserted, BP 92/54 mm Hg
- Central venous catheter inserted
 - Central venous pressure 10 mm Hg
 - Scvo₂ 60%
- C Lactate concentration 6 mmol/L

Does the CVP measurement indicate the need for more intravenous fluids?

 Does the CVP measurement indicate the need for more intravenous fluids? (Choose the best answer)

A. Yes
B. No
C. Cannot be determined

- Patient is intubated for worsening oxygenation, Spo₂ 95% (FIO₂ 0.60)
- Arterial catheter inserted, BP 92/54 mm Hg
- Central venous catheter inserted
 - Central venous pressure 10 mm Hg
 - Scvo₂ 60%
- C Lactate concentration 6 mmol/L

What other monitoring methods can help in determining fluid responsiveness?

Monitoring Fluid Responsiveness

- C Variation in systolic blood pressure, pulse pressure, or stroke volume
 - Mechanically ventilated patients
- C Response to increased preload
 - Passive leg raising
 - Fluid boluses
 - Assess change in stroke volume, cardiac output, or blood pressure
- Variation/change >10%-15% suggests responsive to additional fluids

Arterial waveform tracing on mechanical ventilation

What interventions might be considered?

 What interventions might be considered? (Select the single best answer)

- A. Administration of vasopressors
- **B.** Administration of IV fluids
- **C.** Administration of sedation
- **D.** Decrease PEEP or tidal volume

Arterial waveform tracing on mechanical ventilation

What interventions might be considered?

Copyright 2016 Society of Critical Care Medicine

FCCS

Copyright 2016 Society of Critical Care Medicine

FCCS Key Points

- Oxygen delivery is dependent on cardiac output and arterial oxygen content
- Hemoglobin is the major contributor of oxygen for tissue demands
- Ormal filling pressures may not indicate adequate preload volume
- Scvo₂ and lactate are useful measures of global oxygen balance
- C Low Scvo₂ values suggest oxygen imbalance

5 Key Points

- Pulse oximetry values do not reflect adequacy of oxygen delivery
- C Arterial cannulation is preferred for blood pressure monitoring in unstable patients
- Systolic blood pressure, pulse pressure, or stroke volume variation and fluid responsiveness may help optimize cardiac output and oxygen delivery
- Assessment of acid-base status may suggest specific diagnoses and/or interventions