Acid Base Terminology

Acid

Donates a hydrogen ion (H⁺)

Base

Accepts a hydrogen ion (H^{+})

pН

Negative logarithm of the hydrogen ion concentration

Arterial Blood Gas

Used to assess acid base status and alveolar oxygenation

Mixed Venous Blood Gas

Sampled from a Pulmonary Artery Catheter Used to assess tissue oxygenation

Normal Arterial Blood Gas Values*

pH: 7.35 - 7.45

 $PaCO_2$ 35 - 45 mm Hg

 HCO_3^- 22 - 26 meq/l

Base Excess -2 to +2

 PaO_2 80 - 100 mm Hg

SaO₂ 95% or greater

*At sea level, pH = 7.4, temperature = 37.0° C, & PaCO₂ 40 mm Hg

Acidemia vs Alkalemia

Acidemia: pH< 7.35

Accumulate too much acid or lose too much base

pH<6.8 incompatible with life

Alkalemia: pH > 7.45

Accumulate too much base or lose too much acid

pH > 7.8 incompatible with life

Buffers

Carbonic Acid:

$$H^+ + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow H_2O + CO_2$$
 $\uparrow carbonic anhydrase$

Protein:

Hemoglobin - Binds to CO₂ and H⁺ forming HHb and Hb•CO₂

Phosphate:

$$HPO_4^{-2} + H^+ \rightarrow H_2PO_4^-$$

Respiratory System

Effects of Changes in Ventilation

Hypoventilation $\rightarrow \uparrow$ CO₂ Retention \rightarrow Acidemia

Hyperventilation $\rightarrow \bigvee CO_2$ Retention \rightarrow Alkalemia

Influence of Non-Respiratory Acid Base Disturbances on the Respiratory System

Non-respiratory Acidosis → Increased Ventilation

Non-respiratory Alkalosis → Decreased Ventilation

Renal System

Metabolic Causes of Acidosis:

Will see: \bigvee HCO₃ or \bigwedge H⁺

To compensate or correct

Kidneys Increase Excretion of H⁺ and Retention of HCO₃

Metabolic Causes of Alkalosis:

Will see \uparrow HCO₃ or \downarrow H⁺

Kidneys Increase Excretion of HCO₃ and Retention of H

Tubular Control of H⁺ by the Bicarbonate-Carbonic Acid System

Used with permission. Baker CF. Acid base physiology. In: Clochesy JM, Breu C, Cardin S, et al, eds. Critical Care Nursing. Philadelphia, Pa: WB Saunders; 1993:515.

Pulmonary Module Slide 3-7 ©AACN 2001

Tubular Control of H⁺ by Phosphate

Used with permission. Baker CF. Acid base physiology. In: Clochesy JM, Breu C, Cardin S, et al, eds. Critical Care Nursing. Philadelphia, Pa: WB Saunders; 1993:516.

Tubular Control of H⁺ by Ammonia

Used with permission. Baker CF. Acid base physiology. In: Clochesy JM, Breu C, Cardin S, et al, eds. Critical Care Nursing. Philadelphia, Pa: WB Saunders; 1993:516.

Correction vs Compensation

Correction:

• Primary disorder is repaired - all acid base parameters return to normal

Compensation:

- Primary disorder continues, opposite system begins to adjust
- Attempts to restore ratio of 1 part acid to 20 parts base
- Can be partial or complete compensation

Steps to Acid Base Interpretation

1. Analyze each acid base parameter.

pH: Low, Normal or High?

PaCO₂ Low, Normal or High?

HCO₃ Low, Normal or High?

2. Match acid base disturbance with parameter causing disturbance

 $pH \downarrow and PaCO_2 \uparrow = Respiratory Acidosis$

 $pH \uparrow and PaCO_2 \downarrow = Respiratory Alkalosis$

 $pH \downarrow and HCO_3 \downarrow = Metabolic Acidosis$

 $pH \uparrow and HCO_3^- \uparrow = Metabolic Alkalosis$

Practice Acid Base Interpretation

рН 7.31	PaCO₂ 48	HCO ₃ ⁻ 24	Interpretation
7.47	45	33	
7.20	36	14	
7.50	29	22	
7.23	59	22	
7.50	38	30	
7.40	41	25.5	
7.49	44	33.8	

Compensation

3. Look for Compensation

All variables are abnormal

Either the PaCO₂ or the HCO₃ abnormality would cause the acid base change.

The opposite system has changed in a manner that would have caused the opposite pH change.

Example: pH < 7.37

PaCO₂ ↓ HCO₃ ↓

Disturbance: Metabolic Acidosis with Respiratory

Compensation

Example: pH > 7.42

PaCO₂↑ HCO₃↑

Disturbance: Metabolic Alkalosis with Respiratory

Compensation

Practice Acid Base Interpretation (Compensation)

рН 7.36	PaCO₂ 56	HCO ₃ ⁻ 31.4	Interpretation
7.43	32	21	.
7.46	29	18.1	
7.34	70	42	
7.47	49	33.1	
7.42	31	20	

Pulmonary Module Slide 3-14 ©AACN 200

Combined Disorders

4. Look for Combined Disorders

All acid Base parameters are abnormal

Both the PaCO₂ and HCO₃ would have caused the pH to change in the manner that occurred

Examples:

pH Pa 7.09 50

PaCO₂ HCO₃ 50 15

Interpretation

7.54

33

27.8

Respiratory Acidosis

Blood Gas Values:

pH < 7.35PaCO₂ > 45 mm Hg, HCO₃ normal or elevated

Causes: (Alveolar Hypoventilation)

- a. Depression of the respiratory center
- b. Respiratory muscle paralysis
- c. Chest wall disorders
- d. Disorders of the lung parenchyma
- e. Alteration in the function of the abdominal system

Signs and symptoms:

- a. CNS depression
- b. Muscle twitching which can progress to convulsions
- c. Arrhythmias, tachycardia, diaphoresis
- d. Palpitations
- e. Flushed skin
- f. Electrolyte abnormalities

Compensation:

Increased H⁺ secretion and increased HCO₃⁻ reabsorption

Treatment:

Increase / Improve ventilation

Respiratory Alkalosis

Blood Gas Values:

pH > 7.45PaCO₂ < 35 mm Hg

HCO₃ normal or decreased

Causes:

(Alveolar Hyperventilation)

- a. Psychogenic
- b. CNS stimulation
- c. Hypermetabolic states

Signs and Symptoms:

- a. Headache
- b. Vertigo
- c. Paresthesias, carpal pedal spasm and tetany
- d. Tinnutis
- e. Electrolyte abnormalities

Compensation:

Decrease H⁺ secretion and increased HCO₃⁻ excretion

Treatment:

Slow the hyperventilation

Metabolic Acidosis

Blood Gas Values

pH < 7.35

PaCO₂ normal (rarely) or decreased

 $HCO3^{-} < 22 \text{ meq/l}.$

Causes: (Increase in H⁺ or an excess loss of HCO₃⁻)

- a. Overproduction of organic acids
- b. Impaired renal excretion of acid
- c. Abnormal loss of HCO₃
- d. Ingestion of acid

Signs and Symptoms:

Central nervous system depression

Cardiac Arrhythmias

Electrolyte abnormalities

Flushed skin

Nausea

Compensation:

Lungs increase ventilatory effort

Treatment:

Cause specific

Assess hemodynamic and respiratory status

Careful administration of NaHCO₃

Anion Gap

Definition:

Unmeasured anions in the serum

Calculated Value:

$$(Na^{+} + K^{+}) - (HCO_{3}^{-} - CI^{-})$$

Normal Value: 12 ± 2

Acidosis with Increased Anion Gap:

Accumulation of anions other than Cl

Acidosis with Normal Anion Gap:

Renal Reabsorption of Cl due to the loss of HCO₃

Metabolic Alkalosis

Blood Gas Values

pH > 7.45

PaCO₂ normal (rarely) or increased

 $HCO_3^- > 26 \text{ meq/l}$

Causes: (A loss of hydrogen ions or an increase in HCO₃)

- a. Large losses of gastric contents
- b. Loss of potassium chloride
- c. Ingestion of large amounts of bicarbonate
- d. Prolonged use of diuretics

Signs and Symptoms:

- a. Diaphoresis
- b. Nausea and vomiting
- c. Increased neuromuscular excitability
- d. Shallow breathing
- e. EKG changes
- f. Confusion, lethargy to coma
- g. Electrolyte abnormalities

Compensation:

Decrease in respiratory rate and depth of ventilation to retain CO₂

Treatment:

Underlying cause must be corrected

Arterial and Mixed Venous Gases

	Arterial	Mixed Venous
pH:	7.35 - 7.45	7.33 - 7.43
PCO ₂ (mm Hg)	35 - 45	41 - 51
HCO_3 (meq/l)	22 - 26	24 - 28
Base Excess	-2 to +2	0 to +4
PO ₂ (mm Hg)	80 - 100	35 - 49
O ₂ Saturation (%)	≥ 95%	70 - 75

Oxyhemoglobin Dissociation Curve

Normal curve with oxygen transfer sites

Used with permission. Dickson SL. Understanding th Oxyhemoglobin Dissociation Curve. Critical Care Nurse. 1995:15(5):56-57.

Oxyhemoglobin Dissociation Curve: Causes of Shifts

Used with permission. Dickson SL. Understanding th Oxyhemoglobin Dissociation Curve. Critical Care Nurse. 1995:15(5):56-57.

Factors Leading to Tissue Hypoxia

Low cardiac output

Decreased oxygen carrying capacity

Non-functional hemoglobin

Right to left cardiac shunt

Impaired respiration

Body's Compensation for Tissue Hypoxia

Tachycardia

Tachypnea

Erythrocytosis

Further desaturation of hemoglobin